GPUgaussMLEv2 Solution
in Visual Studio 2010

using Windows 7, Matlab 2010b and CUDA 4.0

Ronald Ligteringen

June 16, 2011

1 Introduction

This manual explains how to setup your computer to use the GPUgaussMLEv2 Solution
in Visual Studio 2010. It is not a manual on how to use the GPUgaussMLEv2 software
itself.

The GPUgaussMLEv2 program is available as a C library and a Matlab library. Both
libraries can be created using Visual Studio 2010. For this a Solution has been created
separating the two libraries from the core GPU code. In total five Projects are defined:

GPUgaussMLEv2 This is the CUDA core code. All interface independent code goes
here.

cpp_GPUgaussMLEv2 This is the C interface for the CUDA core.
mex_GPUgaussMLEv2 This is the mex interface for the CUDA core.

test_cpp_GPUgaussMLEv2 This program can be used to test the C interface or as an
example.

test_mex_GPUgaussMLEv2 This m-script can only be run from inside Matlab. It is
added to the Solution to provide a complete package.

2 Prerequisites

To build and test the libraries you will need a PC with a CUDA capable graphic card.
Test were done on a Dell Optiplex GX620 with the NVIDIA Quadro FX 1700. As you
will be switching from Visual Studio to Matlab and back you need sufficient memory in
the order of 4GB. Further software prerequisites are given below:

Windows This Solution was tested on Windows 7 64-bit. Presumably you could also
use 32-bit although I am not sure if this would allow you to create 64-bit libraries.
Most likely XP and Vista will also work.

Visual Studio 2010 This is a VS 2010 Solution and will not work on older versions of
Visual Studio. Make sure you install the 64-bit compiler if you need to make 64-bit
libraries.

Matlab This Solution was tested with Matlab 2010b 32-bit and 64-bit. It is likely that
older versions will also work. Although Matlab is known to change a lot of features
with their upgrades.

CUDA This Solutions was tested with CUDA 4.0. This version contains both 32- and
64-bit.

3 Software Installation

The preferred order of installation is: 1. Visual Studio, 2. Matlab and 3. CUDA. You
need to tell Matlab which compiler to use by giving the following command in Matlab:
>> mex -setup. Then select the Visual C++ compiler. If you are going to create both
32- and 64-bit libraries you will have to do this for both versions of Matlab.

NOTE: only one settings file (mexopts.bat is used in Matlab for both 32- and 64-bit
but with different settings; therefore you have to rename the settings file after creation
with >>mex -setup for later use: mexopts32.bat and mexopts64.bat, these files can
be found here: ...\Application Data\MathWorks\MATLAB\R2010b (see section 4.3).

With the installation of CUDA scripts are provided to include support in Visual Stu-
dio. If these scripts are not automatically run during installation you can find them
here:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.O\extras\visual_—
studio_integration\.

4 Settings in Visual Studio

The Solution contains five Projects with the core software (GPUgaussMLEv2), two inter-

faces (cpp_GPUgaussMLEv2 and mex_GPUgaussMLEv2) and two tests (test_cpp_GPUgaussMLEv2
and test_mex_GPUgaussMLEv2). The two interfaces build the final libraries and the tests

can be used as examples or for testing the core and interfaces. Note that the mex-test

has been added to the Solution to create a complete package but can only be run from
Matlab! The appropriate settings in each Project are discussed below.

4.1 GPUgaussMLEv2

This is the core CUDA program of the libraries. Because older versions of GPU archi-
tecture (with sm< 1.2) do not allow for external CUDA kernel functions all CUDA code
must be included in the interface code. This is done in the interfaces with #include "GPU-
gaussMLEv2. cu" and in the main core with #include "MatInvLib.cu" and #include "GPU-
gaussLib.cu". The header file GPUgaussMLEv2.h contains the definitions used in the

core, interfaces and tests.

If you need to add a new project with CUDA code do the following:

1. Right click on the Solution and select ’Add%New Project. ..

2. Select ’Win32 Console Application‘ and enter name

3. Select | Static library | and deselect everything else

4. Select ’Build Customization. . . ‘ (right click Project) and select | CUDA 4.0

5. Create source file with ’Add—)NeW Item. .. ‘

6. Select ’ C++ File (.cpp) ‘ and enter name

7. Select of file and select ’ General—Item Type—CUDA C/C++ ‘

8. Again select and change ’ CUDA C/C++—Target Machine Platform‘

according to defined on top of window

9. Rename file from .cpp to .cu

4.2 cpp_GPUgaussMLEv2

This is the C interface to the CUDA core. The Project is setup to build a DLL with one
callable function gpugaussmle with the following parameters:

float *data input data, pointer to matrix

int sz size of array; x=y (array must be square)

int Nfitraw number of arrays

int PSFSigma point spread function sigma

int iterations number of iterations

int fittype which type of function (1=MLEfit, 2=MLEfit_sigma, 3=MLEfit_z, 4=MLEfit_sigmaxy)

float *d_Parameters output parameters, [size = number_of _arraysxnumber_of _parameters].
The number of parameters depend on the fittype (1=NV_P, 2&3=NV_PS, 4=NV_PS2)

float *d_CRLBs output CRLBs, [size = number_of _arrays x number_of_parameters]
float *d_LogLikelihood output loglikelihood, [size = number_of_arrays]

If fittype is 3 then the following parameters also must be given after the *d_logLikelihood:
float Ax, Ay, Bx, By, gamma, d, PSFSigma_y parameters needed for fittype 3 (MLEfit_z)

These extra parameters are handled through the varargs-method in <stdarg.h>.

4.3 mex_GPUgaussMLEv2

This is the mex interface to the CUDA core. This Project builds a mex library which
can be called from within Matlab:

>> [d_Parameters, d_CRLBs, d_LogLikelihood] = mex_GPUgaussMLEv2(data,
PSFSigma, iteratiomns, fittype) % for fittype 1,2 and 4

>> [d_Parameters, d_CRLBs, d_LogLikelihood] = mex_GPUgaussMLEv2(data,
PSFSigma, iteratiomns, fittype,
Ax, Ay, Bx, By, gamma, d, PSFSigma_y) % for fittype 3

The parameters have the same meaning as described in the cpp_GPUgaussMLEv2 Project
(see section 4.2).

The object files must be linked with the mex Matlab program. This can be set in the
Properties of the Project:

1. Right click on the Project and select

2. Select| Configuration Properties—Build Events—Post-Build Event—Command Line

3. Enter the following line:

for 32-bit:

"C:\Program Files (x86)\MATLAB\R2010b\bin\mex"

-f "H:\Application Data\MathWorks\MATLAB\R2010b\mexopts32.bat"
-L"$(CudaToolkitLibDir)" -lcudart -outdir $(TargetDir) $(TargetPath)

for 64-bit:

"C:\Program Files\MATLAB\R2010b\bin\mex"

-f "H:\Application Data\MathWorks\MATLAB\R2010b\mexopts64.bat"
-L"$(CudaToolkitLibDir)" -lcudart -outdir $(TargetDir) $(TargetPath)

NOTE: the H: being the home-directory containing the two mexopts files and also
note the space after -f and -outdir and lack thereof after -L and -1!

4.4 test cpp_GPUgaussMLEv2

This is the test file for the C interface. The program reads an input file, runs the
appropriate kernel and returns an output file. The input file can be generated with the
mex test program in Matlab (see section 4.5). The output file can be read and compared
with the mex interface output using the same mex test program. Make sure to supply
the right parameters used for creating the input data. Also note that the pathname of
the input and output data must be modified. To simplify the data handling only the
d_Parameters are stored.

4.5 test_ mex_GPUgaussMLEv2

The file run20.m is the test script for the mex interface. It can only be used from within
Matlab and it needs the m-script finiteGaussPSFerf .m for generation of the input data.
The script also allows you to create the input file for the C interface test and compare
the result of the C interface with the mex interface. To do this follow the instructions
in the comments in the script.

