LaplacePlusDgg

Second order derivative filter

SYNOPSIS

#include "dip_derivatives.h"

dip_Error dip_LaplacePlusDgg ( in, out, boundary, ps, sigmas, tc, flavour )

DATA TYPES

Depends on the underlying implementation, but expect:

binary, integer, float

FUNCTION

Computes the laplace and the second derivative in gradient direction of an image using the Derivative function and adds the results. The zero-crossings of the result correspond to the edges in the image, just as for the individual Laplace and Dgg operators. The localization is improved by an order of magnitude with respect to the individual operators.

ARGUMENTS

Data typeNameDescription
dip_ImageinInput
dip_ImageoutOutput
dip_BoundaryArrayboundaryBoundary conditions
dip_BooleanArraypsDimensions to process
dip_FloatArraysigmasSigma of Gaussian
dip_floattcTruncation of Gaussian
dip_DerivativeFlavourflavourDerivative flavour

The enumerator flavour parameter is one of:

NameDescription
DIP_DF_DEFAULTDefault derivative flavour (==DIP_DF_FIRGAUSS)
DIP_DF_FIRGAUSSGaussian family, FIR implementation, Gauss
DIP_DF_IIRGAUSSGaussian family, IIR implementation, GaussIIR
DIP_DF_FTGAUSSGaussian family, FT implementation, GaussFT
DIP_DF_FINITEDIFFFinite difference implementation, FiniteDifferenceEx

LITERATURE

Lucas J. van Vliet, "Grey-Scale Measurements in Multi-Dimensional Digitized Images", Delft University of Technology, 1993

P.W. Verbeek and L.J. van Vliet, "On the location error of curved edges in low-pass filtered 2-D and 3-D images", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 7, 1994, 726-733.

SEE ALSO

Derivative, GradientMagnitude, GradientDirection2D, Laplace, Dgg, LaplaceMinDgg