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SUMMARY

Biological cells are very small units with an incredibly complex organization. Biologists
who try to understand the processes within the cells use fluorescence microscopes as
visualization tools on a daily basis. The popularity of fluorescence microscopy origi-
nates from the specificity of labeling, which makes it possible to study the functionality
of components within the structure of living biological cells. This thesis focuses on Struc-
tured Illumination Microscopy (SIM) – a technique that provides optical sectioning and
lateral resolution of up to two times the resolution of standard fluorescence microscopy.

As the name suggests, in SIM a sample is illuminated not uniformly, but with a num-
ber of different illumination patterns. An image with improved resolution and optical
sectioning is mathematically reconstructed from the set of acquired images correspond-
ing to different illumination patterns. Several illumination pattern types and a number
of different reconstruction algorithms can be employed for this purpose. In this thesis
we present an adaptive SIM microscope, built on the basis of a digital micro-mirror de-
vice (DMD). We study which type of illumination and which type of reconstruction are
preferable, and address the photobleaching problem in SIM.

Our DMD-based SIM microscope has a single-pass configuration: structured illumi-
nation is provided by the DMD, and the fluorescence is detected in a widefield manner.
Resolution improvement and optical sectioning are obtained during the digital post-
processing of the acquired images. The optical design of a DMD-based microscope takes
the diffraction effects of the DMD into account, and the optical quality is estimated by
the modulation transfer function (MTF) obtained from an edge-profile measurement.

The flexibility of a DMD-based SIM microscope enables the study of various illu-
mination patterns. We examine how the quality of the reconstructed images and the
convergence speed of the reconstruction algorithms depend on the sparsity and the
number of random patterns. Furthermore, we experimentally demonstrate that peri-
odic (line and multi-spot) patterns are superior to random patterns in terms of resolu-
tion improvement and signal-to-noise ratio (SNR) even when illumination patterns are
known and integrated into the reconstruction process. High spatial frequency compo-
nents have larger magnitudes in periodic patterns, resulting in a better support of the
optical transfer function in the reconstructed images.

The reconstruction problem is addressed in this thesis by formulating a generaliza-
tion of the maximum likelihood estimation methods in SIM. Depending on the choice
of the noise model, update step and regularization function, this generalization reduces
to different well-known forms of reconstruction algorithms. We examine in detail two
particular cases – the pattern illuminated Fourier Ptychography (piFP) and the joint
Richardson-Lucy (jRL) algorithm. Via our generalization we identify the piFP algorithm
as a steepest descent optimization of a quadratic error function, derived using a Gaus-
sian noise model. By studying MTF curves representing different types of sample struc-
tures, we show that the resolution improvement in piFP reconstructions is uniform,
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whereas in the jRL reconstructions it is object-dependent. The convergence speed, reso-
lution improvement and SNR provided by the piFP and jRL algorithms are further com-
pared in experiments conducted on fixed cells. We find that the convergence of the piFP
algorithm is up to ten times faster than the convergence of the jRL algorithm. How-
ever, the piFP algorithm results in images with higher noise amplification and more pro-
nounced artifacts. Dense and periodic objects are better resolved using piFP algorithm,
while isolated objects are better resolved using the jRL algorithm. A combination of both
methods provides the best overall results.

As a technique for visualization of biological specimens, fluorescence microscopy
should be as non-invasive as possible. This thesis proposes an adaptive illumination
scheme for SIM, which reduces the overall illumination light dose and, thereby, attenu-
ates the photobleaching. In adaptive SIM the illumination intensity is locally adjusted
according to the sample, such that brighter sample areas receive less light than darker
sample areas. The decrease in photobleaching is quantified using the integrated image
intensity in time-lapse experiments performed on fixed cells. We demonstrate a pho-
tobleaching reduction in adaptive SIM which enables a three times longer observation
time than in non-adaptive SIM.

In a nutshell, the research work presented in this thesis contributes to the ongoing
development of SIM as a flexible and minimally invasive technique for high-resolution
imaging of living cells.
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2 1. INTRODUCTION

The interest in life on a scale smaller than the limit of human eyesight and attempts to
understand what constitutes matter appeared very early in history. Already in ancient
Greece a concept of small building blocks of matter - atoms - was introduced, although,
of course, more in a philosophical than in an experimental way. Today it is known that
the world of microorganisms, cells, molecules and atoms is hidden behind the apparent
integrity of the objects in our daily environment. Since the smallest details seen by a
naked human eye are on the order of ∼ 50 µm, people are not able to discern the build-
ing blocks of matter without special tools. With the help of modern light and electron
microscopes, however, we can visualize structures that are several orders of magnitude
smaller than the naked human eye allows us to see.

One of the most exciting small-scale worlds we can peek into today is the world of
a living biological cell. Cells have complex organization and appear in many different
types. Fig.1.1 shows an overview of the cells and subcellular components together with
microscopy techniques that can be used for visualizing them. Developments in cell bi-
ology have a large impact on medicine, genetics, nutrition, agriculture and many other
areas of human activity. Although huge progress has been made in identifying various
components of the cells and their functions, many of the intracellular processes remain
poorly understood. An indispensable technique for studying these processes is fluores-
cence microscopy, which enables specific labeling of cellular structures.

100 µm 10 µm 1 µm 100 nm 10 nm 1 nm

human visual system

light microscopy

super-resolution 
�uorescence 
microscopy

electron microscopy

human cells

female egg cell
120 µm

cell 
membrane

red blood cell
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bacteria

cell organelles
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Figure 1.1: Characteristic length scales of cells, cellular components and biomolecules are shown together with
microscopy techniques that can be used for their visualization.
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1.1. FLUORESCENCE MICROSCOPY

F LOURESCENCE microscopy is a truly interdisciplinary field. It is mostly used in biolog-
ical labs, however, it owes its existence to advances made in the fields of electronics,

optics and biochemistry. Moreover, modern microscopes use digital cameras to capture
images. Hence, quantitative analysis of the acquired images additionally requires, to a
greater or lesser extent, digital image processing tools.

1.1.1. INSIDE A FLUORESCENCE MICROSCOPE
In fluorescence microscopy a biological sample is stained with fluorescent labels. The
labeling methods depend on the cellular structure of interest and the parameters of the
experiment. These methods can be roughly divided into three groups: staining using flu-
orescent dyes that bind specifically to the target molecules, immunolabeling using fluo-
rescently labeled antibodies, and labeling using fluorescent proteins (FP), which are ex-
pressed by the cell after genetic modification. The emergence of FP labels, which started
with extracting and sequencing of the green fluorescent protein (GFP), hugely increased
the usage of fluorescence microscopy, since FP labels make it possible for biologists not
only to locate specific proteins, but also to study their functionality in living cells. A
wide range of fluorescent dyes and engineered FPs is currently available for labeling dif-
ferent cellular structures at various wavelengths. The field of biochemistry is engaged
in designing fluorescent labels and improving their performance in terms of selectivity,
stability and brightness.

As an optical instrument, a fluorescence microscope has to provide illumination of
the labeled sample and allow observation of the emitted fluorescence. To this end flu-
orescence microscopes typically have an epi-illumination design, which means that the
excitation and emission light both pass through the objective lens (see Fig.1.2). The flu-
orescently labeled sample is illuminated with the wavelength that corresponds to the
energy difference between the ground state and excited singlet state of the fluorescent
molecules. Lamps, light emitting diodes (LEDs) and lasers can be used as light sources,
and the correct illumination wavelength is selected using the excitation filter. The exci-
tation beam is focused onto the sample by an objective lens – the core optical element of
the microscope. Fluorescent molecules absorb illumination light and emit fluorescence
light, which has a slightly larger wavelength due to the Stokes shift. In order to separate
excitation and emission light, a dichroic mirror and an emission filter are placed in the
optical path. The dichroic mirror reflects illumination light and transmits fluorescence
light, i.e. acts as a wavelength-dependent beam splitter. This component is produced
using thin film deposition. After passing through the dichroic and emission filters, the
fluorescence signal is detected by a digital camera. Since fluorescence signals are often
weak, one of the main requirements for the camera is a high sensitivity and low read-
out noise. In applications where the sensitivity of the conventional CCD camera is not
sufficient EM-CCD or sCMOS cameras are used.

1.1.2. LIMITATIONS OF WIDEFIELD FLUORESCENCE MICROSCOPY
The most widely used type of fluorescence microscopes is the widefield microscope. It
provides uniform sample illumination and captures an image of the whole field of view
in one camera shot. The major advantages of widefield fluorescence microscopy are fast
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sample

objective

dichroic mirror

emission �lter

tube lens

camera

excitation �lter

*
light

source

excitation beam emission beam

Figure 1.2: Schematic view of the epi-illumination fluorescence microscope setup. The sample is illuminated
with light that passes through the excitation filter and reflects off the dichroic mirror. The most important
component of the microscope, the microscope objective lens, focuses the excitation light onto the sample.
Fluorescent labels in the sample absorb excitation light and emit fluorescence. The fluorescence light is col-
lected by the same microscope objective, then passes through the dichroic mirror and emission filter to be
imaged by the camera.
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image acquisition, low illumination light doses, and ease of use.
The lateral resolution in a widefield microscope is limited by diffraction and, accord-

ing to Ernst Abbe’s formula [1], is proportional to λ/2N A, where λ is the emission wave-
length and NA is the numerical aperture of the objective lens (the resolution in Abbe’s
formula is defined as the smallest resolvable period of a grating). Hence, better reso-
lution can be achieved by using shorter wavelengths and higher NA optics. High NA
objectives are complex multi-component lenses, meticulously designed to correct for
chromatic aberrations, spherical aberrations, coma, astigmatism, and field curvature.
The routinely used high NA water and oil immersion objectives have N A = 1.2− 1.45,
which results in a lateral resolution of approximately 200 nm at λ= 500 nm. This means
that an infinitely small point appears as a blurred spot with a size of ∼ 200 nm when im-
aged by such an objective lens. The blurred spot is termed the Point Spread Function
(PSF), and is given by an Airy disk in case of an aberration-free axisymmetric lens [2],
provided the NA is low enough for scalar diffraction to be valid. An image of an object
appears as if each point of an object was substituted by the PSF – a process, which is
mathematically described by a convolution of the object with the PSF of the objective
lens.

In most cases the sample under study has a three-dimensional (3D) structure and the
observer is interested in the 3D distribution of the target molecules. The depth of field
of a widefield microscope is, however, worse than the lateral resolution, and is about
500−700 nm. 3D imaging is typically performed by moving the objective in small steps
in the axial direction and acquiring an image (section) at every position of the objective.
However, when the microscope objective focuses the excitation beam onto the sample,
the whole volume of the sample is illuminated rather than a selective plane. As a result,
fluorescence from the planes below and above the focal plane contributes to the image
at a current focal plane, thereby lowering the contrast and reducing the signal-to-noise
ratio (SNR) of an image. Poor optical sectioning is one of the limitations of the widefield
microscopy.

In general, applying the term "three-dimensional imaging" in high resolution epi-
illumination fluorescence microscopy is a slight overstatement, since only very thin spec-
imens can be studied with this technique. The penetration depth with high-NA oil im-
mersion objectives can be at best ∼ 100 µm, if the refractive index of the specimen is
matched to the refractive index of the immersion medium. In many practical cases, how-
ever, the penetration depth is only 10−20µm due to the scattering and absorption within
the specimen. In order to perform actual 3D imaging one could refer to Light Sheet Fluo-
rescence Microscopy [3], or, alternatively, to one of the non-fluorescent medical imaging
techniques with substantially lower resolution, such as Optical Coherence Tomography
[4].

1.2. DECONVOLUTION AND CONFOCAL MICROSCOPY

A LTHOUGH the widefield fluorescence microscope is a widespread practical tool, its
resolution is not sufficient to visualize many of the cellular components and pro-

cesses of interest. Two established methods to improve the resolution and, most impor-
tantly, the poor optical sectioning of a widefield microscope are confocal microscopy
and deconvolution.

Laurent
Note
2 PEFM should be cited here
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As mentioned in section 1.1.2, the blurring of the object during the imaging process
is mathematically described by convolution of the sample with the PSF of the micro-
scope. Image processing algorithms developed to reverse the convolution and in that
way de-blur the image are referred to as deconvolution. Deconvolution is typically per-
formed in the domain of spacial frequencies, the so-called Fourier space. Deconvolu-
tion in its basic form - the direct inverse filtering in Fourier domain - is a simple and fast
process, which would immediately result in a perfect image in the absence of any noise,
accurate knowledge about the PSF, and assuming OTF 6= 0 everywhere. In reality, unfortu-
nately, the image is always corrupted by shot noise, which has a Poisson distribution, and
the camera read-out noise, which has a Gaussian distribution. Deconvolution of noisy
images by direct inverse filtering does not give the desired effect and, in fact, is never
used for recovering the blurred images in fluorescence microscopy. Practical solutions
to the deconvolution problem of noisy images employ various noise models to generate
sharpened images with improved sectioning [5–8]. The actual power of deconvolution is
quite limited, but it remains a very popular method to boost the resolution and contrast
of widefield fluorescence microscopy images, since it does not require any additional
equipment or any change in the image acquisition process. All resolution improvement
methods have their drawbacks, and deconvolution is no different. The deconvolution
algorithms, often iterative, are based on a number of back and forth Fourier transforms
of the image, and lead to image reconstruction artefacts. Most commonly, the artefacts
manifest themselves as ringing structures at the borders of objects and speckle-like noise
amplification throughout the image.

Confocal microscopy was the first technique developed to improve upon the perfor-
mance of the fluorescence microscope by using a novel optical configuration instead of
digital image restoration [9, 10]. In a confocal microscope the sample is illuminated by a
diffraction-limited spot and the fluorescence is detected through a pinhole, positioned
in the conjugate image plane. The illumination spot is scanned over the sample, and
the fluorescence signal is registered at each scanning position by the a photodetector
placed behind the pinhole. The smaller the detection pinhole, the higher the obtained
resolution. Theoretically, in confocal microscopy a resolution improvement of 2× over
widefield microscopy can be achieved. Realistically, the detection pinhole can never be
made sufficiently small for such an improvement due to the low SNR. Therefore, the
image quality in confocal microscopy is mainly improved because of the enhanced im-
age contrast, obtained due to the efficient out-of-focus light rejection by the detection
pinhole. In order to achieve acceptable SNR, the illumination intensity in confocal mi-
croscopy has to be increased. The high illumination light doses lead to photobleaching,
which is the loss of illumination intensity as a result of the permanent chemical damage
of the fluorescent molecules, and phototoxicity, which is the light-induced damage of
the cellular components and changes in the behavior of the cells. Photobleaching and
phototoxicity of the biological samples under study are negative side effects of confocal
microscopy.

Both 3D deconvolution of widefield images and confocal microscopy are described
in the literature in great detail [6–8, 11]. These methods produce images with similar
quality: confocal microscopy by blocking the out-of-focus light, and deconvolution mi-
croscopy by reallocating the out-of-focus light back to its original axial position. The

Laurent
Note
OTF to be defined 

Laurent
Note
references would be welcome here

Laurent
Note
this statement is controversial: for identical SNR, widefield microscopy requires the same illumination intensity. In other words, this point is not specific to confocal microscopy to my opinion
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combination of two - the deconvolution of confocal images - produces the best results
[12].

1.3. SUPER-RESOLUTION FLUORESCENCE MICROSCOPY

S EVERAL methods to further improve the lateral and axial resolution of a standard
widefield fluorescence microscope were developed in the last 20 years. These meth-

ods got the collective name "super-resolution microscopy", and granted some of their
inventors the Nobel prize in chemistry 2014.

The super-resolution methods have evolved in three major directions. One of the
directions, named localization microscopy, is using localization of single fluorescent
molecules in order to form an image [13–15]. First, the sample is labeled with photo-
switchable or photo-activatable fluorophores, which have blinking behavior – they un-
dergo a number of cycles with "on"(emitting) and "off"(non-emitting) states. Next, a
couple of thousands of camera acquisitions is taken. The switching rate of the fluo-
rophores, labeling density and camera exposure time have to balanced in such a way,
that in each separate camera frame the emitting fluorophores are located at least half of
the microscope PSF apart. If fluorophores appear sufficiently sparse from each other,
they can be individually localized, namely, the PSF model can be fitted to each separate
emitting fluorescent molecule. The coordinates of the localizations from all the fluo-
rophores in all the camera frames form a pointilistic image. The resolution in this im-
age is defined by the labeling density and localization precision, it typically amounts to
∼ 10−30 nm laterally and ∼ 100 nm axially. The downsides of localization microscopy in
comparison to widefield microscopy are long image acquisition times, increased illumi-
nation doses, the need for fluorophores with special characteristics and post-processing
of the acquired images.

The second super-resolution method is Stimulated Emission Depletion (STED) mi-
croscopy [16]. In STED the sample is illuminated by two overlapping beams with aligned
centers. The first beam produces a diffraction-limited PSF and is used for the excitation
of the fluorescent molecules. The second beam has a donut-shaped PSF and is used for
depletion of the fluorescence at the outer rim of the first beam. The resulting depleted
spot has a PSF that is substantially more narrow than the original diffraction-limited PSF.
The STED image is acquired by scanning this spot across the sample. STED microscopy
reaches 30−100 nm lateral and ∼ 100 nm axial resolution. The major disadvantages of
this method are very high illumination light doses and complicated alignment of the op-
tical setup.

Another group of super-resolution methods is based on structured illumination of
the specimen [17–20]. In conventional Structured Illumination Microscopy (SIM) the
sample is illuminated with a number of very fine sinusoidal patterns. For each of the
illumination patterns a separate camera image is taken. Registered images represent
the interference of the sample with illumination patterns. These interference patterns
can be seen as Moiré effect, which describes a situation when the superposition of two
fine periodic patterns with small periods results in a third periodic pattern with a larger
period (shown in Fig.1.3). In SIM the sample structures that are smaller than the diffrac-
tion limit, and, hence, previously could not be captured by the microscope objective,
are now interfering with the illumination pattern and become observable via the used

Laurent
Note
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objective. The final SIM image has to be mathematically reconstructed from the regis-
tered interference patterns. The resolution improvement is defined by the pitch of the
projected illumination pattern. In the case of an epi-illumination microscope the pitch
of the projected pattern is limited by the NA of the objective, therefore, the resolution
in SIM can be up to 2× better than in a widefield microscope. In order to achieve the
axial resolution improvement in SIM, the sample has to be illuminated by patterns that
are additionally modulated along the axial direction. The limitations of the SIM method
are the high risk of reconstruction artifacts and only modest (up to 2×) resolution im-
provement. Theoretically, the resolution in SIM can be extended further by exploiting
nonlinearity between the illumination intensity and emission rate. Such nonlinearity
can be achieved by saturation of the fluorophores [21]. The corresponding technique,
termed saturated SIM (SSIM), has been shown to generate images with resolution on the
order of 50 nm [22, 23]. However, applicability of SSIM to live cell imaging is limited due
to the induced photobleaching.

p1

p2

Figure 1.3: Visualization of the Moiré effect. The superposition of two periodic patterns with small period p1
forms a third periodic pattern with larger period p2. In SIM, fine structures, which cannot be resolved by the
microscope objective, become observable thanks to the interference with the illumination pattern.

Various super-resolution methods are complimentary to each other. Localization
microscopy methods offer the best resolution, however, require special dyes and have
low temporal resolution. STED allows faster imaging, however, is harmful for the bio-
logical samples due to the high illumination doses. SIM offers fast and less aggressive
imaging, but a rather small resolution improvement. The choice of the super-resolution
technique for a particular study depends on the specific experimental parameters: the
sample under study, available dyes, required axial and lateral resolution, and the speed
of the observed biological process. All of the discussed methods have been commer-
cialized, and modern biological labs often have several types of super-resolution micro-
scopes at their disposal. In this work we focus on SIM, which will be discussed in more
detail further on.
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1.4. STRUCTURED ILLUMINATION MICROSCOPY

1.4.1. IMAGE FORMATION IN SIM

A very useful concept to interpret the resolution improvement in SIM is the Optical
Transfer Function (OTF). The OTF is the Fourier transform of the PSF, it indicates

which spatial frequencies k can be transmitted through the optical system. The OTF
of a widefield fluorescence microscope is given by the autocorrelation function of the
exit pupil of the objective. As can be seen in Fig. 1.4, the transmission of a widefield

k0-k0
k

OTF

k0=2NA/λ

Figure 1.4: OTF of a widefield fluorescence microscope is given by the autocorrelation of the pupil function of
the objective, and is limited to |k| < k0, with k0 = 2N A/λ, N A is the numerical aperture of the objective and λ
is the wavelength of the emitted fluorescence.

OTF decreases with increasing spacial frequency |k|, and is limited to |k| < k0, where
k0 = 2N A/λ. Enlarging the OTF footprint of the microscope corresponds to improving
its resolution. In order to understand why SIM has an extended OTF, we will examine the
image formation in 2D SIM in the absence of noise.

Consider a fluorescently labeled object x illuminated by a sinusoidal illumination
pattern p with periodicity corresponding to the cutoff frequency of the microscope ob-
jective k0, as shown in Fig. 1.5(A). The objective collects emitted fluorescence and forms
an image f :

f (r ) = (x(r ) ·p(r ))⊗h(r ), (1.1)

where r is the coordinate vector, ⊗ symbol is used for convolution, and h is the objective
PSF. In the Fourier domain Eq. 1.1 is given by:

F (k) = (X (k)⊗P (k)) ·H(k), (1.2)

where capital letters F, X ,P and H denote the Fourier Transforms (FT) of the functions
f , x, p and h, and H(k) is the OTF of the microscope. Since the illumination pattern is
given by a sinusoidal pattern plus an offset, its FT consists of three delta peaks (see Fig.
1.5(B)). Assuming full modulation depth of the sinusoidal pattern, Eq. 1.2 can be written
as:

F (k) = (X (k)+ 1

2
X (k −k0)e2πiφ+ 1

2
X (k +k0)e−2πiφ) ·H(k), (1.3)

where φ is the phase of the sinusoidal pattern. Equation 1.3 represents the mixture of
three spectral components, attenuated by the OTF. Since two of these spectral compo-
nents are shifted by ±k0, the previously undetectable parts of the spatial frequency spec-
trum of an object (k ∈ [k0,2k0]) and k ∈ [−2k0,−k0]) fall into the transmission pass-band
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of the microscope’s OTF and can now be observed (see Fig. 1.5(B)). The effective OTF in

k0-k0

2k0-2k0

k0-k0 k0-k0

k

kkk

k0-k0

k

× =

× =

Object x
 

Illumination pattern p

FT of an object X FT of illumination pattern P

A A A

A A

x × p

Wide�eld image SIM image 

X       P ×

extended OTF support wide�eld OTF support 

(A)

(B)

(D)

(C) detectable part of the object frequency 
spectrum in wide�eld microscopy 

detectable part of the object
 frequency spectrum in SIM 

Figure 1.5: Illustration of the working principle of SIM. (A) An object x is illuminated by a sinusoidal pattern
p. (B) Convolution of the spatial frequency spectra of the object and illumination pattern produces three
copies of the original spatial frequency spectrum of the object. Previously unobserved parts of the object
frequency spectrum are shifted into the pass-band of the microscope OTF. The OTF pass-band is indicated
by the dashed lines at k0 and −k0. By separating the copies and shifting them to their original positions, we
obtain an extended OTF support (C) and, hence, an improved resolution (D).
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SIM is therefore approximately twice larger than in a widefield microscope (Fig. 1.5(C)).
In order to reconstruct an image with extended OTF, the three components have to be
separated, shifted to their original positions, and combined together again. To allow
separation of the three components, at least three images with different phases φ have
to be acquired. An isotropic resolution improvement is achieved by repeating this pro-
cedure for three orientations of the sinusoidal pattern. Thus, the final 2D SIM image is
reconstructed from 9 raw acquisitions.

1.4.2. EXAMPLES OF SIM IMAGES

The resolution improvement in SIM comes at the cost of artefacts associated with the
image reconstruction process. Fig. 1.6 demonstrates both the resolution improvement
and reconstruction-induced artefacts in SIM. An air objective with N A = 0.7 was used to
image the resolution target in widefield and SIM modes. The resolution target contains
a chirped comb of closely spaced lines. The distances between the lines range from 340
nm to 400 nm with a step of 5 nm, which is close to the diffraction limit of the objec-
tive λ/2N A = 372 nm. The lines are not resolved in the widefield image (1.6(b)), but are
clearly distinguishable in the SIM image (1.6(a)).

Additionally, a widefield image was taken with an oil immersion objective with N A =
1.45 for comparison. Since the N A of the oil immersion objective is approximately twice
larger than the N A of the air objective, the SIM image produced with the 0.7 N A objec-
tive (1.6(a)) is comparable to the widefield image produced with the 1.45 N A objective
(1.6(c)). However, the overall quality of the widefield image is higher due to the bet-
ter SNR and the absence of the reconstruction artefacts. The artefacts, characteristic of
SIM (and, more generally, of deconvolution-based methods), can be observed in image
1.6(a): edge ringing, indicated with red arrows, and noise amplification, pronounced in
the background areas and in the tainted appearance of the originally straight lines.

1.4.3. THE DIVERSITY OF SIM METHODS

The term "structured illumination" is used quite loosely in fluorescence microscopy. A
large group of methods for optical sectioning and resolution-doubling employ struc-
tured illumination of some form. Frequently used types of structured illumination in-
clude sinusoidal, multi-spot, and pseudo-random patterns. Here we provide an overview
of various SIM methods.

Confocal microscopy can be seen as the most basic example of sectioning achieved
by structured illumination, where the illumination pattern consists out of only one spot.
Several techniques were developed to improve the performance of confocal microscopes.
Spinning disk microscopes are using multiple illumination spots to scan the sample in
parallel in order to speed up confocal microscopy [25]. Furthermore, Programmable Ar-
ray Microscopes (PAM) provide sectioning by using Spatial Light Modulators (SLM) in
the illumination and detection paths of the microscope [26–29]. SLMs are pixelated dis-
plays, which allow projection of binary or gray-scale images at high speed. In a double-
pass PAM, pixels of the SLM play the role of programmable pinholes and the out-of-
focus light is not blocked, but redirected to a different optical path and registered by a
second camera. This makes it possible to use very dense pseudo-random illumination
patterns. As a result, PAM can perform optical sectioning at high speed with improved

Laurent
Note
not clear what is the step?
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(a) SIM image 
objective 60x/0.7

(b) Wide�eld image 
objective 60x/0.7

(c) Wide�eld image 
objective 150x/1.45

400 nm

2 μm 2 μm

2 μm

340 nm

Figure 1.6: Resolution improvement in SIM over widefield microscopy. Images of the resolution target con-
taining closely spaced lines were taken with the 60×/0.7 objective. The lines that are resolved in a multi-spot
SIM imaging mode (a) can not be discerned in a widefield mode (b). SIM image (a) displays the reconstruction
artefacts in the form of noise amplification (pronounced in the background) and edge ringing (indicated by red
arrows). Another widefield image taken with a 150×/1.45 objective is given for comparison. (Sample courtesy
S. Hari (TU Delft - Imaging Physics), [24])

sensitivity. A different way to obtain sectioning by structured illumination is to use three
phase-shifted sinusoidal line illumination patterns in combination with widefield de-
tection and computational reconstruction [30]. Finally, speckle illumination, created by
projecting the surface of a diffuser onto the sample [31–33], can also be used for optical
sectioning. The latter two recipes are different from other sectioning methods, since in
their case the rejection of out-of-focus light is achieved during the image reconstruction
process, whereas in confocal, spinning disk and PAM microscopes it occurs optically.
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The bridging technique between the optical sectioning SIM and resolution–doubling
SIM is Image Scanning Microscopy (ISM) [34]. Just like in confocal or spinning disk mi-
croscopy, in ISM a single or multiple foci are used to scan the sample. However, in con-
trast to confocal microscopy, in ISM widefield detection of fluorescence is used. Thus,
every pixel of the detector registers light for each scanning position of the illumination
spot(s). The ISM reconstruction algorithm corrects for the shift between the excitation
and detection PSFs for all pixels of the detector that are positioned off the optical axis.
As a result, a resolution improvement of approximately

p
2 over widefield microscope is

achieved. In practice, additional deconvolution of the reconstructed ISM image pro-
vides further resolution improvement. The ISM principle has been demonstrated in
confocal [34], spinning disk [35], and SLM-based microscopes [36]. Moreover, several
all-optical ISM implementations, based on augmenting a confocal microscope with a
second, (re)scanning, step, are of practical interest [37–39].

The resolution-doubling SIM also encompasses a number of different realizations.
In standard resolution-doubling SIM a fine sinusoidal illumination pattern is created by
a movable diffraction grating, which is placed in the image plane of the microscope. The
reconstruction of the final image is done using the so-called generalized Wiener filter
[40]. This implementation is adopted by all commercial SIM microscopes. Alternatively,
the structured illumination can be created by an SLM [36, 41, 42] or by a diffuser [43],
and the reconstruction can be done using statistical methods [43–45]. In the following
we will use the term ’SIM’ to refer to the resolution-doubling techniques only.

Interestingly, all of the above mentioned techniques can in principle be realized within
one instrument: a microscope, which is equipped with an SLM. An SLM allows pro-
jection of any suitable illumination pattern onto the sample, whether multi-spot, sinu-
soidal, or pseudo-random (speckle) patterns. Depending on the chosen illumination
pattern and reconstruction algorithm, this microscope can perform either optical sec-
tioning or resolution improvement according to one of the schemes described above.
Such a flexible SLM-based microscope is the object of the present research.

1.5. OBJECTIVES OF THIS THESIS

1.5.1. MOTIVATION

A FTER its first successful experimental demonstration in 2000, SIM technology has
reached biological labs and has been quite quickly commercialized. However, the

current commercially available SIM implementations have several shortcomings.
First of all, the hardware of a commercial SIM is based on a movable diffraction grat-

ing, which has a fixed pitch size. This limits the flexibility of the SIM machine, since only
a few objectives match the grating perfectly. The flexibility of SIM can be improved by
substituting the diffraction grating with an SLM, as the type and the pitch of the illumina-
tion pattern projected by an SLM can be adapted to the particular sample or objective.

Next, the software of a commercial SIM is based on separating the two modulated
and the unmodulated copies of the spatial frequency spectrum of the object in the de-
tected images, placing them at the original positions and combining via a generalized
Wiener filter. As a result of this procedure, reconstructed SIM images often suffer from
artefacts. Most common artefacts are edge ringing and noise amplification due to in-
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sufficient apodization [46], and residual stripe patterns due to the inaccurate shift of the
grating and photobleaching of the sample [47]. Therefore, consideration must be given
to the development of novel SIM reconstruction algorithms.

Last, but not least, photobleaching and phototoxicity present a very serious issue in
fluorescence microscopy. These negative side effects do not only hamper the extended
observation of the biological samples, but also cast doubt on the naturalness of the ob-
served processes. The photobleaching and phototoxicity rates increase with increasing
light illumination dose. In order to provide long imaging and prevent harmful light-
induced intracellular interactions, the light dose in fluorescence microscopy has to be
reduced.

In this thesis we address the discussed issues by developing an adaptive SLM-based
SIM microscope. The thesis includes the optical design and characterization of the mi-
croscope, investigation of various illumination types, comparison of reconstruction al-
gorithms, and, finally, consideration of light dose reduction strategies. This multifocal
research work is a step towards a more robust and flexible SIM microscope as a tool suit-
able for imaging sensitive biological samples.

1.5.2. THESIS OUTLINE

Chapter 2 provides a technical reference to the development of a microscope with a dig-
ital micro-mirror device (DMD) incorporated in its conjugate image plane. We present
an optical design of a single-pass SIM and discuss several issues related to this design,
mainly focusing on the diffraction effects of the DMD. The optical quality of the micro-
scope is estimated by measuring the modulation transfer function (MTF) with the edge-
profile method. Images, produced using multi-spot scanning patterns, display out-of-
focus light rejection, i.e. a sectioning effect. The strength of the sectioning effect is esti-
mated from the SNR and signal-to-background ratios. The final image in case of multi-
spot illumination is reconstructed by applying digital pinholing to each raw image and
summing up the processed images. We study the influence of the pitch of the projected
multi-spot patterns and the size of the digital pinhole on the sectioning capabilities of
our DMD-based microscope.

Since resolution–doubling SIM can be accomplished in different ways, it is impor-
tant to understand the benefits and drawbacks of each implementation. In Chapter 3
we question which type of illumination patterns - regular, such as multi-spot and sinu-
soidal, or irregular, such as pseudo-random, - provide the best results. We model SIM
imaging of a simulated resolution target, containing objects of various shapes and sizes.
The quality of the simulated SIM images produced using different illumination types
is compared in terms of the resolution, measured as the full width at half maximum
(FWHM) of point-like objects, and SNR, measured in the bright uniform areas of the
resolution target. The image reconstruction is performed using the pattern-illuminated
Fourier Ptychography (piFP) algorithm. We identify the piFP algorithm as a steepest de-
scent optimization of a quadratic function, and improve its convergence speed by intro-
ducing Newton-Raphson update coefficients. Finally, we compare experimental images
of fixed cells and fluorescent beads acquired under multi-spot and pseudo-random illu-
mination.

In Chapter 4 we formulate the generalized maximum likelihood estimation (MLE)
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treatment of the image reconstruction problem in SIM. This generalization can serve
as an umbrella for all the SIM reconstruction algorithms that employ statistical noise
models. We consider two particular cases: the piFP algorithm, derived assuming ad-
ditive Gaussian noise distribution, and the joint Richardson-Lucy algorithm (jRL), de-
rived from the Poisson noise distribution. By analyzing the development of the modula-
tion transfer functions during the iterations of these algorithms we investigate the phe-
nomenon of the non-uniform resolution improvement. The performance of the piFP
and jRL algorithms is compared in simulations and experiments conducted on fixed
cells.

In Chapter 5 we suggest to use adaptive illumination patterns of the DMD to allevi-
ate the photobleaching issue in SIM. In adaptive SIM we employ multi-spot illumination
patterns and the piFP reconstruction algorithm. The illumination intensity is locally ad-
justed to the sample by applying grayscale masks to the illumination patterns. We con-
sider several strategies for calculating the grayscale masks from a widefield image. The
intensities in the grayscale mask are inversely proportional to the intensities in a wide-
field image, so the illumination dose is reduced at the expense of a lower SNR in bright
areas of the sample. In this context, we quantify the degree of image deterioration in
adaptive SIM. The performance of adaptive SIM is compared to standard SIM in time-
lapse experiments.

A summary of the results and concluding remarks are given Chapter 6.
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[41] P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope
with a programmable illumination array,” Opt. Express 20, 24585–24599 (2012).

[42] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan,
Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution
and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

[43] E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain,
and A. Sentenac, “Structured illumination microscopy using unknown speckle pat-
terns,” Nature Photon. 6, 312–315 (2012).

[44] F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian
estimation for optimized structured illumination microscopy,” IEEE Trans. Image
Process. 21, 601–614 (2012).
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2
DEVELOPMENT OF A DMD-BASED

FLUORESCENCE MICROSCOPE

We present a versatile fluorescence microscope, built by complementing a conventional
fluorescence microscope with a digital micro-mirror device (DMD) in the illumination
path. Arbitrary patterns can be created on the DMD and projected onto the sample. This
patterned illumination can be used to improve lateral and axial resolution over the res-
olution of a wide-field microscope, as well as to reduce the illumination dose. Different
illumination patterns require different reconstruction strategies and result in an image
quality similar to confocal or structured illumination microscopy. We focus on the optical
design and characterization of a DMD-based microscope. Estimation of the optical qual-
ity of the microscope has been carried out by measuring the modulation transfer function
from edge profiles. We have obtained optically sectioned images by applying multi-spot
illumination patterns followed by digital pinholing. The sectioning capabilities of our
DMD-based microscope were estimated from the dependence of the signal-to-background
and signal-to-noise ratios on the pitch of the projected multi-spot patterns and the size
of the digital pinhole. In addition, we provide an outlook on the use of pseudo-random
illumination patterns for achieving both sectioning and resolution enhancement.

Parts of this chapter have been published as N. Chakrova, B. Rieger, and S. Stallinga, Proc. SPIE 9330, 933008
(2015) [1].
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2.1. INTRODUCTION

F LUORESCENCE microscopy serves biologists as an imaging technique for studying in-
tracellular processes and structures. However, it is well known, that the resolution of

a standard wide-field microscope is limited by diffraction and the smallest resolved pe-
riodical structure is defined by Abbe’s formula as λ/2N A, where λ is the wavelength and
NA is the numerical aperture of the objective lens. In the last two decades, attempts to
overcome this resolution limit led to various fluorescence microscopy techniques, pro-
viding lateral resolutions in the range of 20-150 nm and axial resolutions in the range of
100-700 nm (see Ref. [2] for an overview). Unfortunately, none of these methods is uni-
versal and an appropriate technique has to be chosen for each particular application to
achieve the desired trade-off between the resolution improvement, signal-to-noise ratio,
imaging time and photo-bleaching.

In fluorescence microscopy, non-uniform illumination can be used to improve lat-
eral resolution, provide sectioning and reduce the illumination dose. Most prominent
examples of the microscopy techniques that utilize non-uniform illumination are confo-
cal microscopy [3] and structured-illumination microscopy (SIM) [4–8]. In confocal mi-
croscopy, sectioning is achieved by using point illumination and detection. The speed of
image acquisition can be increased by using parallel scanning techniques, such as spin-
ning disk microscopy. In SIM periodic line patterns are used to double the resolution,
which are created by the interference of two or three laser beams in the sample plane.
The final image has to be reconstructed from several images acquired at different posi-
tions and orientations of the line pattern. Apart from point illumination and periodic
line pattern illumination, sequences of pseudo-random patterns have been studied in
spinning disk systems to address the problem of inefficient use of the available illumi-
nation light [9].

The use of spatial light modulators, such as liquid crystal-on-silicon (LCOS) micro-
displays or digital micro-mirror devices (DMD) provides spatial and temporal control
over the illumination patterns and allows to combine all the mentioned patterned illu-
mination techniques in one setup. Such a microscope is expected to produce images
with a quality similar to confocal or SIM microscopy, depending on the type of projected
illumination pattern. Moreover, spatial light modulators can be used to reduce the illu-
mination dose by controlling the illumination pattern pixel by pixel [10]. Together with
improvements in LCOS and DMD technologies, a number of DMD-based and LCOS-
based microscopes were developed [11–17]. Although the performance of the DMD-
based and LCOS-based microscopes is very similar, we consider the use of the DMD
advantageous, due to its higher switching speed and higher contrast over a larger spec-
tral range.

In the following sections we focus on the optical design and characterization of DMD-
based microscopes. We first study the DMD operation and estimate the optical quality of
the microscope by measuring its modulation transfer function (MTF). Next, we present
the examples of sectioned images, produced by projecting the multi-spot patterns onto
the sample, and estimate the sectioning by measuring signal-to-background and signal-
to-noise ratios. In conclusion, we give an outlook on the use of pseudo-random illumi-
nation patterns for achieving both sectioning and resolution enhancement.
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2.2. EXPERIMENTAL METHODS

2.2.1. DIGITAL MICRO-MIRROR DEVICE OPERATION

A digital micro-mirror device (DLP discovery 4100 chip set, Texas Instruments, TX,
USA) consists of an array of 1024×768 square micro-mirrors with a pitch of 13.68µm

and the physical size of the mirror somewhat less due to the fill factor of 91%. Each
micro-mirror can be tilted along its diagonal to occupy one of two positions: +12◦ tilt to
direct the incident beam into the optical path, −12◦ tilt to deflect the incident beam away
from the optical path. Each pixel of the DMD is addressed separately, thus providing the
possibility to create arbitrary illumination patterns. Since the mirrors of the DMD tilt
along their diagonals, the DMD chip is rotated 45◦ in order to keep both incident and
reflected beams in one plane, parallel to the optical table. The DMD is controlled by the
ALP-4.2 Controller Suite (Vialux, Chemnitz, Germany), which is a hardware, firmware
and software package, that allows for a 22 kHz switching rate of the binary patterns.

Particular diffraction characteristics of the DMD have to be understood prior to op-
timal use of this device in an imaging system. The pixelated structure of the DMD is
essentially a two-dimensional blazed diffraction grating with pitch d = dDMD /

p
2 and a

facet tilt angle of θ = 12◦. In a blazed grating, intensity of the diffracted light for wave-
length λ is distributed among m diffraction orders with angles βm = ar csi n(mλ/d)+α,
where α is the angle of incidence. The center of the intensity distribution follows the
reflection from a single DMD pixel and is not coupled with the 0-diffraction order, which
follows specular reflection from the surface of the DMD [18]. Situation, when the cen-
ter of intensity distribution aligns with one of the diffraction orders, is called the blaze
condition and the corresponding order – the blazed order. The blazed order mB receives
most of the diffraction intensity. In case of normal incidence (α= 0◦) the blaze condition
is fulfilled whenβm = 2θ. For given incidence angle and grating parameters each diffrac-
tion order can be at blaze condition for only one wavelength. Table 2.1 shows the blazed
orders and the corresponding blazed wavelengths in case of the normal incidence for
the DMD used in this work.

Figure 2.1: Illustration of the blazing condition. The blaze condition is fulfilled when one of the diffraction
angles equals the angle of specular reflection from a single DMD pixel: β=α+2θ. In case of normal incidence
α= 0◦,β= 2θ.

In the general case, the illumination wavelength does not satisfy the blazed grating
condition and diffracted light from the DMD is not parallel to the optical axis [19]. Fig.2.2
shows this effect for a few typical laser wavelengths. The top row presents simulated
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Table 2.1: Blazed orders and corresponding wavelengths in case of the normal incidence.

Blazed order FW H M ,nm
6 656
7 562
8 492
9 437

10 394

diffraction intensities at the conjugate pupil plane of the microscope. The simulation is
based on the mathematical description of the diffraction amplitude at the DMD given in
reference [20]. The bottom row shows images of the DMD diffraction patterns, projected
on a white screen, taken with a digital consumer camera. Small white circles in the top
row and small black circles in the bottom row represent typical numerical aperture at
the image plane of the microscope NA = 0.012. One can notice, that without taking addi-
tional measures, some wavelengths will not be transmitted through the light path of the
microscope with such an NA. The angle of incidence of the illumination beam has to be
tuned to match the blazed grating condition for a specific wavelength. In case an addi-

λ=405 nm λ=488 nm λ=532 nm λ=658 nm

Figure 2.2: Simulated (top row) and imaged (bottom row) diffraction intensities at the conjugate pupil plane
of the microscope for different wavelengths. Small white circles in the top row and small black circles in the
bottom row represent typical numerical aperture at the image plane of the microscope NA = 0.012. Large white
circles in the top and bottom rows represent increased numerical aperture NA = 0.05.

tional, identical DMD is also used at the detection side, tuning of the incidence angle to
achieve blazed condition is not possible, as excitation and emission wavelengths differ
due to the Stokes shift. One of the solutions to this problem is to increase the numerical
aperture of the relay optics between the DMD and camera in order to capture enough
light even in the off-blaze condition [19]. To estimate the required NA, we refer again to
the mathematical description of the diffraction amplitude at the DMD. In the off-blaze
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case, each of the four closest diffraction orders receives 16/π4 ≈ 16% of the diffracted
light intensity. Ensuring that at least these closest diffraction orders in the off-blaze case
are captured guarantees a total light efficiency of 64% or higher for any wavelength. In
practice, that means increasing the NA 4 times in comparison to the typical values of
NA in the microscope’s image plane. Large white circles in Fig.1 represent this increased
numerical aperture NA = 0.05.

In this work we have used a DMD only at the illumination side and tuned the inci-
dence angle of the diode laser beam with 488 nm wavelength to meet the blazing condi-
tion. A pinhole placed in the Fourier plane of the DMD blocks all the diffraction orders
except for the central one, in order to avoid diffraction induced distortions of the illumi-
nation pattern.

We have observed a mismatch in the intensities of the modelled and imaged diffrac-
tion patterns. Particularly, intensities of the diffraction spots in the imaged patterns ex-
hibit top-bottom asymmetry, which is not predicted by the theory. We have not identi-
fied the reason for this asymmetry, however, we note that it was persistent with changes
in polarization and alignment.

2.2.2. SETUP LAYOUT
A DMD-based fluorescence microscope is built on the basis of an inverted Olympus IX71
microscope. The DMD is placed in a plane conjugate to the image plane of the micro-
scope. The lens relay from the DMD to the microscope image plane is made from two
achromatic doublets and has a magnification of 1.66×. Using a 100× oil immersion ob-
jective each DMD pixel of 13.68×13.68µm is demagnified 1.66×100 = 166 times down to
83×83 nm in the sample plane. The DMD is illuminated by a 100 mW diode laser source
with 488 nm wavelength (Coherent Inc., CA, USA). The laser beam is first despeckled by
a rotating diffuser (SUSS MicroOptics, Switzerland) and expanded to the size that covers
the full area of the DMD. The expanded and despeckled laser beam is then directed to
the DMD at an angle that matches the blazed grating condition of the DMD for 488 nm
wavelength. The U-MWIB2 Olympus filter cube with ET535/50M dichroic mirror, which
is used to separate the excitation and emission bands, is placed between the tube lens
and the image plane. Placing the filter cube outside of the parallel light path is generally
avoided in microscopy, since it can introduce additional distortions to the optical sys-
tem. In our case the filter cube is placed outside of the parallel path to enable the design
where both excitation and emission beams pass through the side port of the microscope.
Fluorescence from the sample is imaged by an sCMOS camera (Hamamatsu Photonics,
Hamamatsu City, Japan) placed at the image plane of the microscope. The optical lay-
out of the experimental setup is given in Fig.2. In order to provide proper sampling, two
Nyquist criteria have to be satisfied – Nyquist sampling by the DMD is achieved if con-
dition (1) is fulfilled, and Nyquist sampling by the camera is achieved if condition (2) is
fulfilled:

dDMD ≤λex /4N A, (2.1)

dsC MOS ≤λem/4N A. (2.2)

If a 100× objective with NA = 1.3 is used, the required DMD pixel size in the object
plane equals 94 nm and the required sCMOS pixel size equals 100 nm, assuming a Stokes
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shift to 518 nm. Hence, the actual DMD pixel size of 83 nm and the actual sCMOS pixel
size of 65 nm provide slight oversampling of the object plane.

Di�user

Laser
488 nm

DMD

Image
plane

sCMOS

Dichroic
mirror

Tube lens

Objective

Lens 
f=250 mm

Lens 
f=150 mm

Sample

Figure 2.3: Schematic view of the setup. The DMD is illuminated by the expanded and despeckled 488 nm
laser beam. The pattern of the DMD is projected into the image plane via a 1.66× lens relay and further into
the sample plane via the tube lens and the objective of the microscope. Fluorescence of the sample passes
through the dichroic mirror and is imaged by the sCMOS camera.

2.2.3. SAMPLES

A thin fluorescent layer was used for the calibration of the system by edge profile and
noise measurements and flat field images. The layer is ca. 110 nm thick and exhibits high
spatial fluorescence homogeneity. The layer was originally developed to characterize the
image quality in sectioning microscopy and is produced as described in Ref. [21]. Multi-
spot scans were applied to the bovine pulmonary artery endothelial (BPAE) cells (Life
Technologies, CA, USA), in which F-actin is stained with Alexa Fluor 488 phalloidin.

2.3. OPTICAL QUALITY ASSESSMENT

2.3.1. ESTIMATING THE MTF BY THE EDGE-PROFILE MEASUREMENT METHOD

O NE of the ways to estimate the resolution of an optical system is to measure its Mod-
ulation Transfer Function (MTF). In order to estimate the MTF, we have performed

edge-profile measurements (see Fig.3 and Ref. [22]). First, a sharp edge pattern was cre-
ated on the DMD by switching half of the pixels in the “on”-state and another half in the
“off”-state. The edge patterns were projected into the thin, homogeneously fluorescent
layer as described above, and the images were captured by the sCMOS camera. The im-
age of the edge on the camera is the Edge Spread Function (ESF) – the two-dimensional
convolution of the edge-source object with the excitation and emission PSF of the sys-
tem. The camera and the DMD are precisely aligned in such a way that the DMD edge
is strictly vertical or strictly horizontal with respect to the camera chip. The edge profile
was calculated from an average of 10 images. After dark-field and flat-field correction, we
averaged the resulting image over several hundreds of camera rows to extract the vertical
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edge or over several hundreds of columns to extract the horizontal edge. The obtained
edge profile is a one-dimensional projection of the ESF. Next, the ESF was differentiated
in order to get the one-dimensional projection of the Line Spread Function (LSF). Finally,
the MTF curve was found as the Fourier transform of the LSF.
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Figure 2.4: Estimation of the MTF from the edge-profile measurement. a) Original sharp edge b) Edge Spread
Function c) Line-Spread Function d) Modulation Transfer Function.

In order to reduce the noise in the MTF curves, the following procedure was applied.
The edge profile was upsampled by a factor of 8 using spline interpolation. Noise on the
high and low plateaus of the edge profile was reduced by calculating a moving average
over a varying window. After differentiation by finite differences, the LSF was downsam-
pled back to its original rate and the zero level of the LSF was further smoothed down by
applying the moving average over a varying window.

2.3.2. THEORETICAL MTF CURVES
The MTF of an incoherent optical system can be calculated as the normalized autocor-
relation of the exit pupil of the system. In case of a circular aperture the MTF is of the
form:

MT F

(
f

fcuto f f

)
= 2

π

cos−1
(

f

fcuto f f

)
−

(
f

fcuto f f

)√√√√1−
(

f

fcuto f f

)2
, (2.3)

where the cutoff frequency fcuto f f = 2N A/λ , is the highest frequency transmitted by
the diffraction-limited system with numerical aperture NA for a given wavelength λ, and
f ∈ [0, fcuto f f ] [23].

In our experiment, a sharp edge is created as a pattern on the DMD and projected
into the thin fluorescent layer by the microscope objective. The projected edge is then
imaged on the sCMOS camera by the same microscope objective. Since we are imaging
not the sharp edge directly, but the image of this edge, each point of the original edge
is blurred twice by passing twice through the optical path. Hence, the MTF given by
formula 4.3 has to be squared in order to correctly represent the expected optical MTF.
The MTF of the camera is found as a Fourier transform of the camera pixel. The pixel
shape is represented by the rectangle function and its Fourier transform - by the si nc
function:

MT Fcamer a = si nc(πa f ), (2.4)
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with a the pixel size of the camera in the sample plane. The final theoretical MTF is
calculated as a product of the optical MTF and camera MTF.

2.3.3. COMPARISON OF THE EXPERIMENTAL AND THEORETICAL MTF CURVES

MTF curves were measured for two objectives: 10× air objective with NA = 0.25 and 100×
oil immersion objective with NA = 1.3. We have imaged vertical and horizontal edges of
two types. Owing to the structure of the DMD, edges of type 1 are formed by neighboring
pixels at an angle of 156° and edges of type 2 are formed by neighboring pixels at an angle
of 204◦ (Fig.2.5). This difference in the geometrical structure of the edges influences the
edge profiles of the system and results in different MTF curves for different edge types.

Edge
type 1

Edge
type 2

Edge
type 1

Edge
type 2

Projected pattern

Pixels of the DMD

“on”-pixels “o�”-pixels “on”-pixels

Figure 2.5: The edges formed by the DMD. Black arrows indicate the incident light, red arrows – light reflected
by the pixels in the “on” state, blue arrows – light, reflected by the pixels in the “off” state.

Measured MTF curves for the 10× objective correspond well to the theoretical MTFs,
which indicates that the microscope performance is close to diffraction-limited in this
case (Fig.2.6). High NA objectives are more complex and are more sensitive to misalign-
ments in the system. The measured MTF curves for the 100× oil immersion objective are
also sensitive to the edge type, as can be seen from Fig.2.7. Edge type 1 results in higher
values for the MTF than edge type 2. The difference in the MTF curves is the result of the
difference in the geometrical structure of the edges at the DMD per se. Noteworthy, this
difference is not prominent in the MTF curves for the low NA objective.

We have measured the MTF with an alternative method in order to avoid this edge-
type sensitivity in the MTF curves. Horizontal and vertical lines with a thickness of a
single DMD pixel where projected into the sample. Images of these projections corre-
spond to the LSF profiles. Taking the Fourier transform of the LSF results in an edge-type
independent MTF measurement, as shown in Fig.2.7.
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Figure 2.6: The MTF curves for 10× objective with NA = 0.25 indicate that the microscope performance is close
to diffraction-limited. The spatial frequency is normalized to the cutoff spatial frequency fcuto f f = 2N A/λ.
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Figure 2.7: The MTF curves for 100× objective with NA = 1.3. Edge type 1 results in higher MTF values than
edge type 2. The MTF profiles differ due to the difference in the edges of the DMD per se. MTF curve calculated
from a line profile shows an edge-independent MTF measurement.
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2.4. MAPPING THE DMD TO THE CAMERA

E ACH pixel of the DMD that is projected into the sample, appears as a blurred spot
in the raw camera image. In order to apply reconstruction algorithms, we have to

establish the correspondence between each DMD-pixel and its image on the camera. To
create a precise mapping of the DMD pixels onto the camera grid, we apply the follow-
ing procedure. A calibration image is taken by projecting a multi-spot DMD pattern into
a thin, homogeneously fluorescent layer. The multi-spot pattern is created as an array
of switched “on” DMD pixels, arranged in a square grid with pitch p. The square with
the side that equals the pitch size of the projected grid is called the unit cell. Assuming
that the unit cells which are closest to the optical axis are not distorted in the camera
image, we find the unit cell vector c as best fitting vector (in the least squares sense) to
the 6×6 central unit cells. The square grid with the pitch size of the unit cell vector is
the grid of expected spot positions of the DMD-pixels in the camera (xc , yc ). Actual spot
positions deviate from this grid of expected positions due to distortions in the system.
This deviation increases with increasing distance from the optical axis. The actual spot
positions (x ′

c , y ′
c ) are found with subpixel precision as local maxima in the neighbour-

hoods of the expected spots positions (xc , yc ). In order to find the coordinates of all the
remaining pixels of the DMD in the camera plane, the found positions of the actual spots
of the square grid have to be translated p2 −1 times with the step that equals c/p. Thus,
each DMD pixel (xDMD , yDMD ) is mapped on the camera grid with subpixel precision as
(x ′

c , y ′
c ). An example of the spot detection in a calibration image is given in Fig.2.8.

unit cell pxp at the DMD calibration image

c

p

(xDMD, yDMD)

(xc’ , yc’ )
(xc , yc)

Figure 2.8: Mapping of the DMD to the camera is performed by detecting the illumination spots in the cal-
ibration image. Each DMD pixel (xDMD , yDMD ) is mapped onto the camera grid with subpixel precision as
(x′c , y ′c ).

The deviation of the actual spots from the expected spots provides valuable informa-
tion about distortions that are present in the system. For our reconstruction procedure
we have used the part of the image field of view (FOV) where the actual spot positions
deviated from the expected spot positions by less than 1.5 camera pixels. Such a FOV
typically amounts to approximately 800× 800 camera pixels, which corresponds to an
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area of 52 µm×52 µm in the sample plane if a 100× oil immersion objective is used.

2.5. MULTI-SPOT ILLUMINATION RESULTS

W E obtained optically sectioned images by projecting multi-spot patterns onto the
sample and applying digital pinholing to the raw images. First, a square grid pat-

tern with pitch p is projected onto the sample. To illuminate the sample homogeneously,
the pattern is translated p2 −1 times with a translation step of one DMD pixel. A cam-
era image is taken for each pattern translation, so that in total p2 camera frames are
collected. After dark field and flat field correction, we apply digital pinholing for each
raw camera frame to suppress the out-of-focus light. Digital pinholing is performed by
detecting the spots in each camera frame and multiplying each of the spots with a 2D
Gaussian mask with standard deviation σ. The value of σ controls the strength of the
sectioning effect as will be shown later in this section. For each Gaussian spot, the in-
tensities of all the pixels falling within a spot are summed up, and the resulting intensity
value is assigned to the corresponding DMD pixel. In this way, each raw camera image is
converted into an image that has the number of pixels of the DMD chip. Accurate map-
ping of the DMD to the camera is essential to perform this step. After the pinholing, p2

converted images are summed up to build an optically sectioned image. A comparison
of such an image with a standard wide-field image is given in Fig.2.9.

Two main parameters influencing the sectioning capabilities of a DMD-based mi-
croscope for a given objective are the pitch p of the projected pattern and the pinholing
Gaussian mask width σ. By changing the pitch we are changing the trade-off between
the speed of image acquisition, which is given by the number of needed raw frames, and
the sectioning strength (Fig.2.10a, 2.11). The optimal pitch should provide the smallest
number of raw images without compromising the sectioning quality. For the parame-
ters of our setup, p = 12− 16 DMD pixels proved to be sufficient to this end. Smaller
pinhole separations result in a significant crosstalk between the pinholes and hamper
the detection of the individual illumination spots, which results in artefacts in the recon-
structed image. Larger pinhole separations increase the imaging time without providing
substantially better sectioning. The sectioning effect can be assessed by the background
level in the reconstructed images, since a better sectioning results in a higher signal-to-
background ratio (SBR). The SBR was estimated by analysing the images of the BPAE
cells, reconstructed after the multi-spot illumination. We have estimated the signal as
the mean of the 1% highest intensity pixels and the background as the mean of the back-
ground area. The resulting SBR in the reconstructed image with p = 16 DMD pixels is
approximately 6 times higher than the SBR in the widefield image. By squeezing the dig-
ital pinhole parameter σ we enhance the sectioning, but at the same time reduce the
signal-to-noise ratio (SNR) (Fig.2.10b, 2.11). The SBR was estimated in the same manner
as previously. The SNR was measured by analysing images of the thin homogeneously
fluorescent layer. After dark field and flat field correction, the signal was measured as
the mean intensity of the image, and the noise as the standard deviation of the intensity
in the image. In confocal microscopy the size of the digital pinhole is usually set as the
diameter of the first dark ring of the Airy pattern dAi r y . A Gaussian profile corresponding
to the Airy pattern with dAi r y = 1.22λ/N A has a standard deviation σ≈ 0.45λ/2N A ≈ 85
nm for the given objective. Horizontal lines in Fig.2.10 correspond to the SBR and SNR
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in a widefield image. The illumination dose used for the widefield image was approxi-
mately 10 times lower than the total illumination dose that was used for the multi-spot
scan. Therefore, the SNR of the widefield image was scaled by the factor of

p
10 in order

to compare the widefield and the reconstructed images at equal illumination doses in
Fig.2.10b.

Figure 2.9: Images of BPAE cells stained with phalloidin conjugated to Alexa Fluor 488, acquired with a 100×
/1.3 objective. a) Widefield image b) The sum of p2 frames acquired at all scanning positions of the multi-
spot illumination. Without the digital pinholing, the image resembles the widefield image, but displays higher
noise level due to the pixel-dependent gain and noise of the sCMOS camera. c) Optically sectioned image
reconstructed from the multi-spot illumination by applying digital pinholing.
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Figure 2.10: Sectioning capabilities of the DMD-based multi-spot scanning microscope depending on the
pitch size (a) and the pinholing parameter σ (b). a) The sectioning effect can be improved by increasing the
pitch of the projected multi-spot pattern. However, the number of frames required and the image acquisition
time depend quadratically on the pitch. A pitch of 12-16 DMD pixels provides a reasonable compromise be-
tween sectioning and image acquisition time. The horizontal line indicates the SBR in a widefield image. b)
By decreasing the digital pinhole parameter σ we enhance the sectioning on the one hand and deteriorate the
SNR on the other hand. The optimal value σ ≈ 85 nm corresponds to the pinhole size equal to the first dark
ring of the Airy pattern. Horizontal lines indicate the SBR and SNR in a widefield image.
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Figure 2.11: Top row: comparison of the images reconstructed using different values of the pinhole parameter
σ. The images are acquired with the optimal value of the pitch p = 16 DMD pixels, and are displayed with
linearly stretched contrast, since there is a large difference in the intensities of the images reconstructed using
different σ values. The sectioning effect is enhanced with decreasing pinhole parameter σ. Bottom row: com-
parison of the images acquired with different pitch values p. The images are reconstructed using the optimal
pinhole parameter σ = 85 nm and have the same contrast stretching. A small pinhole separation p = 8 DMD
pixels results in artefacts in the reconstructed image. A pinhole separation of 12-16 DMD pixels provides op-
timal results. Further increase of the pitch size leads only to a minor sectioning improvement. The sectioning
strength was assessed by the SBR in each image. The signal was estimated as the mean of the 1% highest in-
tensity pixels and the background as the mean of the background area, which is shown as a white box in the
bottom-left image.

2.6. OUTLOOK ON THE USE OF PSEUDO-RANDOM PATTERNS

P SEUDO-RANDOM sequences were first applied in a spinning disk microscope in 1996
by Juškaitis et al. [9] to address the issue of inefficient use of the available illumi-

nation light in confocal microscopy. Similar types of patterns have been later applied
in dual-pass DMD-based microscopes [13, 24]. In both spinning disk and DMD-based
microscopes the sectioning effect was obtained by illuminating the sample through the
aperture mask and detecting the fluorescence light through the same aperture mask
(dual-pass setup). The use of pseudo-random patterns in a single-pass configuration
with wide-field detection is not straightforward, since it requires more elaborate recon-
struction algorithms to retrieve a sectioned image. This is even more complicated when
improved lateral resolution, as in SIM, is required. Nonetheless, this option might be
advantageous over a dual-pass setup due to the simplified optical implementation. To
our knowledge, pseudo-random patterns have not been applied in a single-pass DMD-
based microscopes with widefield detection up to date. However, the improvement of
lateral resolution by applying speckle illumination was recently demonstrated [25, 26],
and optical sectioning with speckle illumination and widefield detection was obtained as
well [27]. In case of speckle illumination the information about the illuminating patterns
is not available, which leads to computationally demanding reconstruction algorithms
and, hence, relatively slow reconstructions. We are aiming to apply pseudo-random il-
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lumination patterns in a single-pass DMD-based microscope for both sectioning and
lateral resolution improvement. A priori knowledge of the illumination patterns is ex-
pected to simplify and speed up the reconstruction. Furthermore, the DMD patterns
can be designed in such a way that their sum results in a homogeneous intensity distri-
bution, which is expected to reduce the overall noise level.
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3
STUDYING DIFFERENT

ILLUMINATION PATTERNS FOR

RESOLUTION IMPROVEMENT IN

FLUORESCENCE MICROSCOPY

Various types of non-uniform illumination can be used for resolution improvement in
fluorescence microscopy. Here we study the differences between several types of incoherent
illumination patterns, such as multi-spot, line and pseudo-random patterns. This re-
quires an imaging setup and an image reconstruction algorithm that are flexible enough
to incorporate any type of illumination pattern. We employ fluorescence microscope with
structured illumination generated by a Digital Micromirror Device (DMD) and the pattern-
illuminated Fourier Ptychography reconstruction algorithm (piFP) to this end. The piFP
method is modified and improved by identifying the algorithm as steepest descent opti-
mization of a least squares function. We find that illumination patterns with regular
structure are superior to those with irregular structure in terms of resolution enhancement
and noise level in the reconstructed images.

Parts of this chapter have been published as N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, Opt.
Express 23, 31367–31383 (2015) [1].
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3.1. INTRODUCTION

S TRUCTURED illumination microscopy (SIM) can be used to improve lateral resolu-
tion and optical sectioning capabilities of a fluorescence microscope. In standard

wide-field fluorescence microscopy the sample is illuminated uniformly and the resolu-
tion is limited by diffraction to typically 180-250 nm laterally and 500-700 nm axially. In
contrast to wide-field microscopy, in structured illumination microscopy multiple non-
uniform illuminations are combined to improve sectioning and lateral resolution.

The mechanism responsible for the resolution improvement in structured illumina-
tion microscopy can be understood by considering the spatial frequency distributions of
the illumination pattern and the sample. Multiplication of the sample structure with the
illumination pattern in the object domain is equivalent to a convolution of the sample
spectrum with the illumination pattern spectrum in the Fourier domain. As a result of
this convolution, sample frequencies beyond the diffraction limit are shifted into the de-
tection passband of the microscope objective. As the excitation and emission passbands
are equal in an epi-illumination setup up to a small correction due to the Stokes shift, a
maximum resolution improvement by a factor of two can be reached.

In conventional SIM periodic line patterns, which are created by the interference
of two or three parallel beams in the sample plane, are used to double the resolution.
The final image is reconstructed from several images acquired at different positions and
orientations of the line pattern. SIM has been implemented in various configurations
[2–5] and has also been extended to 3D imaging [6] and live cell imaging [7]. Although
several other super-resolution methods lead to a larger resolution improvement [8–11],
SIM plays an increasingly important role in biological imaging due to its compatibility
with live cell imaging and with the wide range of existing standard fluorescent dyes [12].

Image reconstruction in SIM requires an accurate knowledge of the shift between
line pattern illuminations [13, 14], and thus, is sensitive to misalignments and distor-
tions of the illumination pattern. In order to lower the requirements on the precise
knowledge of the illumination pattern in the reconstruction process, structured illu-
mination methods with speckle illumination patterns have been developed. In the so-
called blind-SIM approach unknown illumination patterns are reconstructed alongside
the sample using a conjugate gradient algorithm [15, 16] or other algorithm [17]. The re-
cent advancements in blind-SIM methods allow processing of 2D slices acquired in thick
samples [18]. These methods can use speckle patterns created by projecting the light
transmitted by a diffuser onto the sample. This arrangement significantly simplifies the
optical setup and lowers the requirements on the knowledge of the projected patterns.
Moreover, the algorithms can be helpful in reconstructing images in classical SIM in case
the illumination patterns are distorted. Nevertheless, the high computational demands
of these methods may hamper their use in practice. A different, less computationally
demanding technique to improve the resolution based on the speckle illumination was
recently demonstrated by Zheng et al. [19]. The sample structure and shifted illumina-
tion speckle pattern are reconstructed using the pattern-illuminated Fourier Ptychog-
raphy (piFP) algorithm, which is a Fourier Ptychography concept [20], modified for use
in fluorescence microscopy. It is worth noting that besides the attempts to improve the
lateral resolution, speckle illumination has also been applied in order to achieve opti-
cal sectioning in fluorescence microscopy [21–23]. Based on these studies the question
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arises whether SIM with regular illumination patterns (lines, spot arrays) or with irregu-
lar illumination patterns (speckle) is superior in terms of image quality.

In this paper we address this question using a flexible fluorescence microscope with
structured illumination generated by a digital-micro-mirror device (DMD). The DMD-
based fluorescence microscope belongs to the family of fluorescence microscopes with
spatial light modulators integrated in their optical path [24–30]. We use the so-called
single-pass configuration, where the DMD is placed only in the illumination path and
the detection is standard widefield. The flexibility of the DMD allows us to study SIM
with various types of illumination patterns, such as multi-spot, line, and pseudo-random
patterns. An integral part of the imaging system is the reconstruction algorithm. We use
the piFP technique, which can be used for any type of illumination pattern, thus match-
ing the flexibility of our imaging setup. We start our treatment of image reconstruction
for structured illumination microscopy by linking the piFP algorithm to steepest descent
optimization of a quadratic function. Next, we investigate how the convergence speed of
the piFP algorithm may be improved by modifying the iterative update step size. We then
test the performance of different illumination patterns in terms of noise enhancement
and resolution improvement. Finally, we demonstrate the differences in the behaviour
of the various illumination patterns on bead samples and fixed biological samples.

3.2. THEORY

3.2.1. FOURIER PTYCHOGRAPHY METHOD AS STEEPEST DESCENT OF A QUADRATIC

FUNCTION

I N this section we will draw parallels between the iterative piFP scheme and least squares
optimization via the steepest descent method. We consider an object represented by

M pixels with intensities xi (i = 1,2, ..., M) that is illuminated by a set of N illumination
patterns pn

i (n = 1,2, ..., N ). Notice that here we model the continuous object as a dis-
cretized set of points, which is expected to give rise to correct results provided the sam-
pling density is sufficiently high, i.e. above Nyquist. The expected photon count for pixel
i and image n is given by the convolution sum:

µn (~ri ) =
M∑

j=1
hem (

~ri −~r j
)

x
(
~r j

)
pn (

~r j
)
, (3.1)

where hem(~r ) is the normalized emission point spread function (PSF) of the microscope.
In the following we will use the shorthands hem

i j = hem
(
~ri −~r j

)
, µn

i = µn(~ri ), xi = x(~ri ),

and pn
j = pn(~r j ) for conciseness. The illumination patterns at the sample plane pn

i are

obtained from the DMD patterns qn
i by convolution with the excitation PSF hex (~r ):

pn
i =

M∑
j=1

hex
i j qn

j . (3.2)

Here, effects of partial coherence in the illumination are neglected. The actually mea-
sured images d n

i differ from the expected model images µn
i due to noise. The object
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pixels xi are reconstructed by minimizing the quadratic function:

E = 1

2

N∑
n=1

M∑
i=1

(
d n

i −µn
i

)2, (3.3)

which is sometimes derived from the log likelihood of the image formation model given
the observations in the presence of uniform Gaussian noise. The minimum may be
found numerically using a local iterative update algorithm:

x
′
i = xi +βx

∂E

∂xi
, (3.4)

which is the gradient descent update rule with step size βx . The gradient w.r.t. the object
is given by:

∂E

∂xi
=−

N∑
n=1

M∑
j=1

hem
j i pn

i

(
d n

j −µn
j

)
=−

N∑
n=1

M∑
j=1

hem
j i pn

i

(
d n

j −
M∑

k=1
hem

j k xk pn
k

)
(3.5)

The connection to the piFP algorithm becomes clear via the introduction of a set of ad-
ditional variables – the N emission intensities for the N illumination patterns:

yn
i = pn

i xi . (3.6)

The update rule for the object 3.4 can then be split in three consecutive steps with these
variables:

step 1: yn
i = pn

i xi , (3.7)

step 2: y
′n
i = yn

i +βy

M∑
j=1

hem
j i

(
d n

j −
M∑

k=1
hem

j k yn
k

)
, (3.8)

step 3: x
′
i = xi + βx

βy

N∑
n=1

pn
i

(
y
′n
i −pn

i xi

)
(3.9)

In case the step sizes are chosen to be βx = βy = 1, Eqs. 3.7-3.9 constitute the set of
updates of the piFP algorithm [18]. It should be noted, however, that in the piFP method
the object is updated for each update of the variable yn

i , whereas in the optimization of
the quadratic function E the object is updated once after all N variables yn

i have been
updated. We have observed that this sequential update of the object in the piFP algo-
rithm results in artefacts in the reconstructed image during the first several iterations,
but does not significantly influence the image quality at the convergence point. More-
over, we found that updating an object sequentially may be beneficial for the stability
of the piFP algorithm when multi-spot and line illumination patterns are used. Inter-
estingly, Guizar-Sicairos and Fienup have also made a connection to least squares fit-
ting in their treatment of the original ptychographical iterative engine targeting phase
retrieval in coherent imaging [31]. They argue that one would expect a more robust al-
gorithm w.r.t noise if all the measurements are used simultaneously when refining the
object estimate. We did not observe such an improvement in robustness, which might
be explained by the different – incoherent – imaging modality that is considered here.
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The key advantage of splitting the optimization of the squared error E in parts as
above is that the update for yn

i (step 2), proportional to the gradient, is purely expressed
as a convolution. The update for the yn

i in Fourier space is then purely local:

Y
′n
i = Y n

i +βy ·OT F∗ (
Dn

i −Y n
i ·OT F

)
, (3.10)

where capital letters indicate the Fourier transform counterparts of the variables, OT F
is the optical transfer function, i.e. the Fourier transform of hem , and the ∗ indicates
the complex conjugate. The subsequent update for the xi is local in direct space to start
with.

If the illumination patterns pn
i are unknown, they can be reconstructed as well in a

similar manner:

p
′n
i = pn

i +βp
∂E

∂pn
i

= pn
i + βp

βy
xi

(
y
′n
i −pn

i xi

)
. (3.11)

Although the recovery of the illumination patterns is not strictly necessary when a DMD
is used, it is worth considering for the sake of development of more simple fluorescence
microscopes that use a priori unknown speckle illumination. In the following set of sim-
ulations and reconstructions we have assumed that the illumination patterns at the sam-
ple were given by the convolution of the known DMD patterns with the excitation PSF,
as in 3.2. At the end of our treatment we will shortly revisit the matter of illumination
pattern retrieval.

3.2.2. FOURIER PTYCHOGRAPHY ALGORITHM WITH NEWTON-RAPHSON UP-
DATE

The steepest descent method is often not the most effective way to solve an optimiza-
tion problem. Methods involving the second order derivative of the objective function,
such as the Levenberg-Marquardt (LM) or the Newton-Raphson (NR) algorithms, usu-
ally result in faster convergence by tuning the step sizes βx and βy . Application of the
LM algorithm implies the calculation of the Hessian matrix of the optimized function E
as obtained using Eqs. 3.2 and 3.5:

Li j = ∂2E

∂xi∂x j
=

N∑
n=1

M∑
k=1

hem
ki hem

k j pn
i pn

j =(
M∑

k=1
hem

ki hem
k j

)(
M∑

l=1

M∑
m=1

hex
i l hex

j m

(
N∑

n=1
qn

l qn
m

))
,

(3.12)

and multiplication of the gradient of the merit function with the inverse of L+κdi ag (L),
with κ the LM-parameter, rather than with the constant step size βx . Further simplifica-
tion is possible if the DMD patterns qn

i are designed such that their sums are:

N∑
n=1

qn
i = N

〈
q
〉

, (3.13)

N∑
n=1

(
qn

i

)2 = N
〈

q2〉 , (3.14)
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independent of pixel location i . These conditions can be fulfilled by programming pat-
terns of the DMD in such a way that each DMD pixel is switched “on” the same number
of times and, hence, the overall illumination is uniform. In fact, these patterns are pre-
ferred over fully randomized patterns, since a uniform total illumination results in a re-
duced overall noise level. If furthermore we may neglect correlations between the on-off
sequences at different DMD pixels then it holds that:

N∑
n=1

qn
l qn

m ≈ N
(〈

q2〉−〈
q
〉2

)
δlm +N

〈
q
〉2. (3.15)

We are, however, aware that this assumption is only partly correct for our experimental
setup. Assuming that the excitation PSF is normalized to unity we then find a Hessian:

Li j = N
(〈

q2〉−〈
q
〉2

) M∑
k=1

hem
ki hem

k j

M∑
l=1

hex
i l hex

j l +N
〈

q
〉2

M∑
k=1

hem
ki hem

k j . (3.16)

Application of the LM-algorithm requires the inversion of the matrix L +κdi ag (L), a
daunting task as this is an M ×M matrix with M the total number of pixels. This could
be done more efficiently by splitting the image in patches but nevertheless requires a
substantial numerical effort in matrix inversion. The NR-algorithm, on the other hand,
uses only the diagonal part of the Hessian, making the update local again:

xi
′ = xi − 1

Li i

∂E

∂xi
(3.17)

with:

Li i = N
(〈

q2〉−〈
q
〉2

) M∑
k=1

(
hem

ki

)2
M∑

l=1

(
hex

l i

)2 +N
〈

q
〉2

M∑
k=1

(
hem

ki

)2. (3.18)

Shift invariance of the illumination and imaging now imply that the sums:

K em
i =

M∑
k=1

(
hem

ki

)2 = K em , (3.19)

K ex
i =

M∑
l=1

(
hex

l i

)2 = K ex (3.20)

are also independent of pixel location. Then the diagonal part of the Hessian is simply
proportional to the identity matrix:

Li i = N
(〈

q2〉−〈
q
〉2

)
K emK ex +N

〈
q
〉2K em , (3.21)

for all pixels i . The crucial approximation in deriving this result is the neglect of the
correlations between the on-off sequences of the different DMD pixels. We will apply
the NR-algorithm under this approximation in the following.
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3.3. SIMULATIONS

3.3.1. SIMULATION SETUP

T HE original piFP algorithm was compared to the piFP algorithm with Newton-Raphson
(NR) update step size in simulations. The performance of both image reconstruc-

tion algorithms was evaluated for various types of illumination patterns. A simulated
resolution target, shown in Fig. 3.1(a), was used as test object. The imaging system
was described by the scalar diffraction based Airy PSF with full width at half maximum
FW H M ≈ 0.513λem/N A, where λem = 530 nm is the emission wavelength and NA = 1.4
is the numerical aperture of the objective. A pixel of the simulated resolution target in
the sample plane equals λem/16N A and the numbers of line groups in Fig. 3.1(a) indi-
cate the pitch of the group in units of λem/8N A. Hence, group 4 is at the limit of the
widefield imaging and group 2 is at the limit of the structured illumination imaging.

We have tested three types of DMD patterns: multi-spot, pseudo-random and line
patterns, as shown in Figs. 3.1(b-d). A multi-spot DMD pattern is generated as a square

(a) (b)

(c) (d)

Figure 3.1: (a) Simulated resolution target. Line group 4 has the pitch of λem /2N A, corresponding to the limit
of the widefield imaging. (b)-(d) Examples of illumination patterns generated at the DMD: multi-spot (b), line
(c) and pseudo-random (d) patterns.

grid of spots with the size of one pixel. The pattern is then translated N −1 times by one
pixel in order to illuminate the whole object. Pseudo-random DMD patterns are gener-
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ated in the following way. Suppose we have a set of N pseudo-random DMD patterns.
Each pixel is switched “on” S times making the sum of the N patterns uniform. The S
patterns for which any pixel is nonzero are randomly drawn from the total set of N pat-
terns. In this way we can generate pseudo-random patterns with controlled sparsity and
uniform total illumination. Finally, several shifts and rotations of a binary line grid are
used to generate a set of line patterns. The maximum frequency of the projected pat-
terns is limited to fcuto f f = 2N A/λex in an epi-fluorescence microscope setup. Hence,
assuming totally incoherent DMD illumination, the generated illumination patterns are
multiplied in the Fourier domain by the incoherent OTF of the optical system with a cut-
off frequency fcuto f f in order to obtain the set of illumination patterns pn

i in the sample
plane. The N illumination patterns pn

i are made to be uniform in their sum and the total
intensity of N images d n

i is taken equal for all the described pattern types. The illumina-
tion intensity per pixel summed over all patterns is set to 2.5×104 photons and Poisson
noise is added to each simulated image. Although the quadratic error metric of Eq. 3.3
does not apply to Poisson noise, it nevertheless can be expected to minimize the mis-
fit between the noisy observations and expected images based on the image formation
model. The described image reconstruction algorithms were implemented in MATLAB
(Mathworks, USA) using the DIPimage toolbox [32]. The reconstructions were carried
out according to Eqs. 3.7–3.9, where an object with uniform intensity was used as an
initial guess for the object variables xi considered here.

3.3.2. STOPPING CRITERION

We have shown that the piFP-algorithm is equivalent to least squares optimization, which
is known to be an ill-posed mathematical problem in the absence of regularization. We
have indeed observed that letting the iteration run to reach the best possible numerical
convergence tends to lead to undesirable graininess in the reconstruction, i.e. to noise
amplification. This effect becomes apparent when examining the development of the
modulation transfer function (MTF) with iterations (Fig. 3.2). In order to obtain the MTF
curves we have simulated piFP imaging of a line object with a thickness of one pixel. The
MTF was calculated as the Fourier transform of the line profile in the reconstructed im-
age at each iteration of the piFP algorithm. As seen in Fig. 3.2, with the growing number
of iterations the high frequency components are increasingly amplified, which simulta-
neously leads to the noise amplification. In addition, with the growing number of iter-
ations the shape of the MTF curve becomes increasingly less smooth, causing ringing
artefacts in the reconstructed image.

Clearly, some form of regularization is needed in order to prevent this problematic
noise blowup and avoid ringing artefacts. We have found that abandoning numerical
precision as criterion for terminating the iteration in favour of a more loose criterion
on the error metric E defined in Eq. 3.3 can effectively serve as regularization for the
optimization problem. It appears that E converges to a value following from the noise
statistics only. In case there is only shot noise, this limiting value, which we term noise
level N L, is:

N L =
N∑

n=1

M∑
i=1

d n
i , (3.22)
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We obtained satisfactory reconstructions when the iterative optimization was stopped if
the error E is equal to N L or within a small fraction of it, say within 1%. This convergence
criterion is reached within 3-60 iterations (we consider N updates of the object for N
illumination patterns to be one iteration of the piFP algorithm), depending on the type
of projected patterns and the choice of β.
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Figure 3.2: Change of the MTF curves during the piFP iterations. Multi-spot illumination patterns with a pitch
of 12 pixels, which corresponds to a spatial frequency cutoff of 1.7 times the widefield bandwidth 2N A/λ, were
used to simulate the illumination of a line object. The MTF is calculated as the Fourier transform of the line
profile at each iteration of the piFP reconstruction algorithm. The stopping iteration is highlighted in red. The
vertical dashed line indicates the highest possible resolution improvement estimated from the pitch of the
projected illumination patterns.

3.3.3. THE EFFECT OF SPARSITY AND NUMBER OF PSEUDO-RANDOM PAT-
TERNS

Figure 3.3 shows a comparison of the image quality for pseudo-random patterns with
different sparsity. The fill factor f – the percentage of non-zero DMD pixels per pattern –
is the measure of sparsity of the projected patterns. Here we used a total number of illu-
minations N = 144 and the original piFP reconstruction algorithm [18]. The illumination
dose is rescaled in order to keep the total illumination intensity of N images constant re-
gardless of the sparsity. Figure 3.3(a) shows the relative difference between the error,
calculated according to Eq. 3.3 and the noise level, calculated according to Eq. 3.22. The
crossings of the curves with the horizontal dashed line indicate when the error reaches
the noise level within 1%, the stopping condition for the iterative algorithm. A compar-
ison of the signal-to-noise ratios (SNR) is given in Fig. 3.3(b). The SNR was measured as
the mean signal of the uniform rectangle in the top-left corner of the resolution target
divided by the standard deviation of the signal across that uniform area (background is
zero). The horizontal dashed line shows the SNR in a uniformly illuminated widefield
image with the same illumination dose as the cumulative dose of the N pseudo-random
patterns. Figure 3.3(c) shows the resolution improvement as a function of the number of
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iterations. The full width at half maximum (FWHM) was estimated by fitting a Gaussian
function to point objects in the reconstructed images of the resolution target (not visible
in Fig. 3.1(a)). The horizontal dashed line shows the FWHM of a widefield image.

The simulation results indicate that patterns with high fill factor, which imitate speckle
illumination, are inferior to patterns with lower fill factor in terms of resolution improve-
ment and noise suppression. However, the improvement in FWHM and SNR for lower
fill factor comes at the expense of a reduced convergence speed. For the given number of
illumination patterns N = 144, one iteration takes 2.2 seconds on an Intel Xeon E5-1620
v2 CPU with 3.70 GHz clock speed. Hence, the total reconstruction time increases from
6.6 seconds in case f = 20% to 2.2 minutes in case f = 0.7%. Moreover, in order to obtain
even lower sparsity, one has to increase the total number of illumination patterns, which
will lead to further deceleration of the reconstruction process. In this sense, confocal
imaging can be seen as a particular case of structured illumination, in which the lowest
possible sparsity is achieved.
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Figure 3.3: Comparison of the image quality for pseudo-random patterns with different sparsity. (a) Illustration
of the stopping condition. The crossings of the curves with the horizontal dashed line indicate when the error
reaches the noise level within 1%. (b) Lower fill factor results in higher SNR. Horizontal dashed line shows the
SNR in a widefield image. Round markers indicate the final iteration according to our stopping criterion. (c)
Lower fill factor results in smaller FWHM. The dashed lines show the FWHM in a widefield image and the best
possible resolution λ/4N A.

Another parameter influencing the quality of the reconstructed image in the case
of pseudo-random illumination is the total number of illumination patterns N . Figure
3.4 shows that the resolution improves with increasing number of illumination patterns,
probably because cross-talk effects from neighboring pixels are averaged out over mul-
tiple acquisitions. This differs from the situation with spatially periodic illumination,
where the number of projected patterns plays a secondary role. When line or multi-
spot illumination patterns are used, the resolution of the reconstructed image mainly
depends on the spatial frequency content (pitch) of the projected illumination patterns.
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Figure 3.4: (a) In the case of pseudo-random illumination, the resolution of the reconstructed image improves
with increasing number of illumination patterns N . We used 10 illumination patterns in (b) and 100 illumina-
tion patterns in (c). The sparsity of the patterns is kept constant ( f = 10%).

3.3.4. COMPARISON OF ILLUMINATION PATTERN TYPES

Theoretically, projecting a line or a multi-spot pattern with a spatial frequency as large
as 2N A/λex will result in the largest resolution improvement. However, due to the low
modulation at the limit of the OTF in an incoherent illumination system and the pres-
ence of noise, a 10-30% smaller spatial frequency of the projected pattern is used in real
imaging systems. We used a pitch of 12 pixels (12 pixels = 1.5×λex /2N A) for the multi-
spot and line patterns and a sparsity of 0.7%, which results in an average distance of
12 pixels, for the pseudo-random patterns. These values for the pitch and the average
distance correspond to a spatial frequency of the projected patterns that is 33% smaller
than the cutoff frequency of the microscope. The total number of illuminations is kept at
N = 144 for each pattern type, while keeping the total illumination dose constant. Since
within a single piFP iteration the object is updated N times, the same number of illu-
minations for each pattern type is required in order to provide a fair comparison of the
convergence speeds of the algorithm for different types of illumination patterns. The
required number of line pattern illuminations was obtained by using 12 shifts and 12 ro-
tations of the line grid. This is different from standard SIM acquisitions in which 3 to 5
shifts and 3 or 5 rotations are used.

The comparison of the performance of the two described algorithms and three types
of illumination patterns is given in Fig. 3.5. The convergence speed is significantly higher
when multi-spot and line patterns are used instead of pseudo-random illumination pat-
terns. Furthermore, as predicted by theory, the convergence speed of the piFP algorithm
with NR update rule is improved in comparison to the original piFP algorithm for all
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types of illumination patterns. The effect is most evident in the case of pseudo-random
patterns, where the number of iterations is reduced by a factor of two; for the multi-spot
and line patterns the improvement is inessential. Furthermore, we observe that appli-
cation of the NR update rule leads to a moderately reduced SNR and slightly improved
FWHM at the stopping point of the iteration. In the case of pseudo-random illumina-
tion patterns the decrease in SNR and FWHM when NR update rule is used is negligible.
In the case of multi-spot and line illumination patterns the SNR decrease is within 15%
and the FWHM improvement is within 10%. This result reflects the trade-off between
resolution improvement and noise amplification – sharper images typically exhibit more
pronounced noise structures in the uniform areas.

The SNR and FWHM values of a conventional SIM image, reconstructed from 9 line
grid illuminations using the generalized Wiener filter reconstruction [33], are given for
comparison. It should be noted, that the illumination patterns do not reach maximum
modulation, since they are projected from the DMD onto the sample fully incoherently
via the objective lens, and are hence blurred by the illumination PSF. The modulation
depth of the projected pattern is an important parameter, influencing the quality of
the SIM image. A conventional SIM image reconstructed from acquisitions with larger
modulation of the illumination pattern at the sample would have resulted in a smaller
FWHM. Achieving improved modulation in DMD-generated illumination patterns is in
principle possible by treating the DMD as a diffraction grating and filtering out the DC
component in the Fourier plane. Another option would be to exploit the flexibility of the
DMD to study the formation of three-dimensional illumination patterns.
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Figure 3.5: Performance of the original piFP algorithm compared to the performance of the piFP algorithm
with NR update rule for different types of illumination patterns. SNR (a) and FWHM (b) curves display the
trade-off between the sharpness of the structures and the noise appearance in the reconstructed images. Ap-
plication of the NR update rule leads to faster convergence, reduced SNR and improved FWHM. Round mark-
ers indicate the final iteration according to our stopping criterion. The SNR and FWHM values of the widefield
and conventional SIM images are given for comparison.

Finally, reconstruction with the piFP algorithm and the proposed stopping criterion
is independent of the underlying sample structure and applied illumination type. In
contrast to the generalized Wiener filter reconstruction, where the regularization pa-
rameter has to be set empirically, the proposed method does not require adjustment of
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parameters with unclear impact on the final image quality. The novel stopping criterion
we propose automatically provides for the needed regularization.

3.4. EXPERIMENT

3.4.1. EXPERIMENTAL SETUP

W E conducted a series of experiments in order to test the performance of the modi-
fied piFP algorithm with the different illumination pattern types. Our DMD-based

microscope is built by complementing an inverted Olympus IX71 fluorescence micro-
scope with an illumination branch that provides the projection of the DMD patterns
onto the sample. An expanded and despeckled beam of a 488 nm laser is used to illumi-
nate the DMD. The DMD pixels with physical size of 13.68 µm are then demagnified to
137 nm in the sample plane with the help of a 250:150 mm lens relay and a 60× /0.7 air
objective (Fig. 3.6). Although higher resolution images can be produced with immersion
objectives, this is not needed for the current comparison study. The actually measured
NA of the excitation beam in the back focal plane of the objective lens amounts to 0.6,
thus, illumination and detection NA slightly differ. The pixel sampling of the Orca Flash
4.0 camera corresponded to 108 nm at the sample, which provides slight undersampling
(∼ 10%) of the specimen compared to the maximum cutoff 2N Ai m/λem + 2N Ai l l /λex .
A precise mapping of the DMD to the camera is required for accurate prediction of the
illumination patterns from the patterns displayed on the DMD. We have used an earlier
developed calibration procedure in order to establish the correspondence between each
DMD pixel and its image on the camera. The details on the optical design of the setup
and the calibration procedure are given in [34].

Di�user
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DMD

Image
plane
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Dichroic
mirror

Tube lens

Objective

Lens 
f=250 mm

Lens 
f=150 mm
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Figure 3.6: Schematic view of the DMD-based fluorescence microscope. The beam of the 488 nm diode laser
is despeckled and expanded in order to provide illumination of the DMD surface. The DMD patterns, demag-
nified by the 250:150 mm optical relay and by the objective lens, are projected onto the sample. The sCMOS
camera detects fluorescence from the sample. One camera frame is taken for each illumination pattern [34].
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3.4.2. IMAGING FLUORESCENT BEADS

Multi-spot and pseudo-random illumination patterns were applied to a sample contain-
ing 100 nm diameter fluorescent microspheres (Invitrogen, CA, USA) deposited on a
microscope coverslip. We have used a pitch of 10 DMD pixels for the multi-spot illu-
mination patterns and a fill-factor of 1% and 10% for the pseudo-random illumination
patterns. The total number of illuminations is N = 100 and the overall illumination dose
is kept the same for all illumination types by adjusting the power of the laser.

The original piFP algorithm assumes reconstruction of 2D slices and does not take
the background and the out-of-focus light into account. The background intensity is,
however, always present in the acquired images. We found that the reconstruction can
be improved by adding a background to the estimates of the emission intensities in step
1 of the algorithm. This background was estimated as the 20th percentile of the intensity
in the set of N collected images. The expected noise level N L was estimated from the
read-out noise of the camera and the Poisson statistics of light. The stopping criterion
proposed in section 3.2 was reached within 8 iterations in case of the multi-spot illumi-
nation patterns. However, in case of the pseudo-random patterns the predicted noise
level does not correspond to the convergence value of the error metric E . We assume
that an additional noise source is present in the images acquired under pseudo-random
illumination that hinders the correct noise level estimation in this case. Low fill factors
lead to high additional noise, while high fill factors provide some averaging of the back-
ground intensity and lead to lower noise. Therefore, an alternative stopping criterion
was used for pseudo-random illumination patterns: the convergence is reached when
the change of E between two consecutive iterations is within a small fraction (we have
taken 2%) of E . This criterion is reached for f = 1% and f = 10% within 17 and 4 itera-
tions respectively.

The comparison of the images, acquired for the various illumination pattern types
and reconstructed by the original piFP algorithm, is given in Fig. 3.7. The zoom-in area
shows neighboring beads, which are not resolved in a widefield image (Fig. 3.7(a)), but
are clearly resolved in the reconstructed image after multi-spot illumination (Fig. 3.7(c)).
The resolution is also better than obtained from a standard Richardson-Lucy deconvo-
lution of the widefield image (Fig. 3.7(b)). We observe that the relative intensities of
the fluorescent beads are not preserved in the image reconstructed after the pseudo-
random illumination patterns with low fill factor (Fig. 3.7(d)). This qualitative observa-
tion indicates that the pseudo-random illumination patterns with low fill factor, which
would theoretically lead to higher resolution improvement than the patterns with high
fill factor, cannot be reliably applied in practice. The piFP reconstruction after pseudo-
random illumination patterns with higher fill factor displays correct relative intensities
of the beads (Fig. 3.7(e)); however, as predicted by the theory, it shows weaker resolution
improvement compared to the piFP reconstruction after the multispot illumination pat-
terns.

We have observed that in case of multi-spot patterns and pseudo-random patterns
with high fill factor, the piFP algorithm with NR update rule is only marginally faster than
the original piFP algorithm; at the same time, it is less stable and occasionally leads to
diverging solutions when applied to experimental data. Hence, for most practical cases
in fluorescence microscopy the original piFP algorithm converges sufficiently fast and is
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Figure 3.7: Comparison of piFP reconstructions for different illumination patterns. The sample containing
100 nm diameter fluorescent microspheres was imaged using a 60× /0.7 air objective. (a) Widefield image.
The two neighboring beads shown in the zoom-in area are not resolved. (b) Widefield image deconvolved
using the Richardson-Lucy algorithm shows slight resolution improvement. (c) piFP reconstruction for the
multi-spot illumination patterns. The two neighboring beads are well resolved. (d) piFP reconstruction for the
pseudo-random illumination patterns with fill factor f = 1%. The neighboring beads are separated, however,
the relative intensities of the beads are not preserved. (e) piFP reconstruction for the pseudo-random illu-
mination patterns with fill factor f = 10% shows weaker resolution improvement compared to the multi-spot
patterns.
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preferred because of its stability. The NR update rule in piFP algorithm can be recom-
mended when a large number of sparse pseudo-random illumination patterns is used.

3.4.3. IMAGING FILAMENTOUS SAMPLES

The same multi-spot and pseudo-random patterns as described in section 3.4.2 were
tested on a test slide with bovine pulmonary artery endothelial (BPAE) cells (Invitrogen,
CA, USA), in which F-actin is stained with Alexa Fluor 488 phalloidin. Estimation of the
noise level is a demanding task for this sample, since its three-dimensional structure
leads to high background and out-of-focus light. Therefore, we have used the stopping
criterion based on the change of E between two consecutive iterations as described in
section 3.4.2. In agreement with the results achieved on the bead sample, multi-spot il-
lumination patterns produce the most visually satisfactory reconstruction (Fig. 3.8(d)),
while pseudo-random patterns with 1% fill factor result in enhanced graininess in the
reconstructed image (Fig. 3.8(e)). As can be seen in Fig. 3.7(d), this graininess leads to
inaccurate representation of the relative intensities in the image. Finally, an image re-
constructed for pseudo-random illumination patterns with 10% fill factor displays pro-
nounced low frequency noise structures that are typical for SIM images reconstructed
with insufficient apodization [35] (Fig. 3.8(f)).

3.4.4. RECONSTRUCTION OF ILLUMINATION PATTERNS

An obvious advantage of using a DMD compared to speckle illumination is having a pri-
ori knowledge about the projected illumination patterns, which significantly simplifies
the reconstruction process in terms of speed and robustness. In the above we did not
include the reconstruction of the illumination patterns pn in the algorithm, since we
use pre-designed patterns generated by the DMD and assume that these illumination
patterns are mapped to the camera pixel grid with high accuracy. We have added the
illumination pattern reconstruction step according to Eq. 3.11 in order to test the influ-
ence of this additional step in the algorithm on the final reconstruction. We have used N
different illumination patterns, in contrast to the original piFP algorithm [18], where N
shifts of a single DMD pattern are used. Hence, in our method each of the N illumina-
tion patterns has to be reconstructed separately. The initial estimate of each illumination
pattern pn is given by the expected illumination pattern, i.e. by the known DMD pattern
blurred by the excitation PSF of the objective. As shown in Figs. 3.9(a) and 3.9(b), the
algorithms with and without the pn refinement step produce comparable sample recon-
structions; however, the algorithm with the pn refinement step takes several iterations
longer to reach convergence. Reconstructed illumination patterns match the expected
illumination patterns well, thereby confirming the high accuracy of the used calibration
procedure.

We have also implemented an illumination pattern reconstruction taking the uni-
form sum illumination constraint of Eq. 3.13 into account using a Lagrange multiplier
approach. This procedure gave rise to a similar outcome. It is necessary in the pattern
estimation to use the prior knowledge of the DMD-patterns as starting point for the iter-
ation in order to guarantee convergence. Taking uniform illumination patterns as start-
ing point did not result in reasonable reconstructions. We may conclude that the piFP
algorithm can work as a “semiblind SIM” deconvolution, in contrast to the fully “blind
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Figure 3.8: Comparison of piFP reconstructions for different illumination patterns. Images of the BPAE cells
were acquired using a 60×/0.7 air objective. (a) The sum of all acquired frames is given to demonstrate the uni-
formity of the illumination. (b) Widefield image. (c) Deconvolution of the widefield image using Richardson-
Lucy algorithm. (d) piFP reconstruction for the multi-spot illumination patterns. (e) piFP reconstruction for
the pseudorandom illumination patterns with fill factor f = 1% showing enhanced graininess. (f) piFP recon-
struction for the pseudo-random illumination patterns with fill factor f = 10% showing pronounced low fre-
quent noise structures. The profile plots along the highlighted yellow line only show three distinct filaments
for the multi-spot reconstruction in (d).
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Figure 3.9: The algorithms with and without the reconstruction of the illumination patterns produce compa-
rable results. (a) piFP reconstruction using known illumination patterns reaches convergence in 7 iterations.
Images show the reconstructed object and an example of the known illumination pattern. (b) piFP reconstruc-
tion with estimation of the illumination patterns reaches convergence within 9 iterations. Images show the
reconstructed object and an example of the estimated illumination pattern. (c) An example of the actually
measured image dn and the corresponding expected image µn in case the known illumination patterns are
used.

SIM” deconvolution approach [13,14]. A comparison of the actually measured image d n

and the corresponding expected image µn is given for illustration in Fig. 3.9(c).
In order to further test the strength of the prior knowledge of the illumination pat-

terns we have also compared the expected and reconstructed pseudo-random illumina-
tion patterns with higher fill-factor ( f = 10%). Figure 3.10 gives the representation of the
difference between the reconstructed and expected illumination patterns and reveals
good correspondence between the two with errors typically below 10%.

3.5. CONCLUSION

I N this paper we have shown that the piFP algorithm, which is the FP concept applied
to fluorescence microscopy, can be interpreted as a steepest descent optimization of

a quadratic function. This representation opens opportunities to modify, improve or
specifically tailor the piFP algorithm to the details of the given optimization problem.
We have demonstrated in simulations the improvement of the convergence speed of the
piFP algorithm by modifying its update coefficients according to the Newton-Raphson
rule.

We have used a DMD-based fluorescence microscope with widefield detection and
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Figure 3.10: Comparison of the expected (a) and reconstructed (b) patterns in case of pseudo-random illumi-
nation with fill-factor f = 10%. (c) The profile of the difference Pexp –Pr ec along the yellow line shown in (a)
reveals good correspondence between the expected and reconstructed illumination patterns.

image reconstruction with the piFP algorithm to test various illumination patterns for
resolution improvement and noise enhancement in fluorescence microscopy. We also
show that accurate calibration of the microscope enables one to omit the step of re-
constructing the illumination patterns in the algorithm. We demonstrate, both in sim-
ulations and in experiments, that the illumination patterns with a regular spatial struc-
ture, such as multi-spot or line patterns, are preferred over randomized patterns even
when the illumination patterns are known. Irregular illumination patterns do not have
a sharply peaked spatial frequency content but instead a more smeared out spectrum.
The reconstructed MTF in the region beyond the widefield cutoff can therefore be antic-
ipated to be lower than for regular illumination patterns. In order to achieve the same
sharpness this will come at the expense of significant noise enhancement.

According to our simulations, pseudo-random patterns with high sparsity provide
better resolution improvement and noise suppression than pseudo-random patterns
with low sparsity. However, in practice, there appears to be an additional noise source
present in the images reconstructed from pseudo-random illuminations. This noise
source plays a larger role in case the sparsity of the pseudo-random illumination pat-
terns is high, resulting in grainy images. Tracking the root cause of this effect is the
target of follow-up research. We speculate here that it may lie in imperfections of the
imaging model. First of all, our two-dimensional imaging model does not take the three-
dimensional structure of real samples and of the microscope PSF into account. Second,
the scalar diffraction based Airy PSF model is a simplification at the moderately high NA
= 0.7 at which the images were acquired. Finally, slight non-uniformities and correla-
tions in the illumination patterns due to insufficiently suppressed spatial coherence in
the illumination may also play a role. Extending the piFP method to incorporate these
effects is an important next step in developing the piFP imaging technique. Regulariza-
tion techniques may also be added into the mix to establish a form of noise suppression.
Finally, an in-depth comparison of the piFP method with other reconstruction methods,
notably the joint Richardson-Lucy deconvolution method [36, 37], would further serve
to benchmark the algorithm.

Laurent
Note
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4
DECONVOLUTION METHODS FOR

STRUCTURED ILLUMINATION

MICROSCOPY

We compare two recently developed multiple-frame deconvolution approaches for recon-
struction of structured illumination microscopy (SIM) data: the pattern-illuminated Fourier
Ptychography algorithm (piFP) and the joint Richardson-Lucy deconvolution (jRL). The
quality of the images reconstructed by these methods is compared in terms of the achieved
resolution improvement, noise enhancement and inherent artefacts. Furthermore, we
study the issue of object-dependent resolution improvement by considering the modu-
lation transfer functions derived from different types of objects. The performance of the
considered methods is tested in experiments and benchmarked with that of a commercial
SIM microscope. We find that the piFP method resolves equally well periodic and isolated
structures, whereas the jRL method provides significantly higher resolution for isolated ob-
jects compared to the periodic ones. Images reconstructed by the piFP and jRL algorithms
are comparable to the images reconstructed using the generalized Wiener filter applied in
most commercial SIM microscopes. An advantage of the discussed algorithms is that they
allow reconstruction of SIM images acquired under different types of illumination, such
as multi-spot or random illumination.

Parts of this chapter have been published as N. Chakrova, B. Rieger, and S. Stallinga, JOSA A 33, 12–20 (2016)
[1].
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4.1. INTRODUCTION

T HE two main factors deteriorating image resolution in fluorescence microscopy are
noise and the fundamental limitation of the optical system posed by diffraction. The

blurring of an object caused by the Abbe diffraction limit is mathematically described
as a convolution of this object with the point spread function (PSF) of the microscope,
which is limited in bandwidth to spatial frequencies smaller than 2N A/λ (where λ is
the fluorescence wavelength and N A is the numerical aperture of the microscope objec-
tive). The process of partially inverting this blur is referred to as deconvolution. Decon-
volution has long remained one of the most popular methods to improve the quality of
fluorescence microscopy images. Since the 1980s, numerous deconvolution microscopy
methods were developed and extensive literature is available for their comparison [2–4].
In practice, the improvement in image quality achieved by 3D deconvolution of wide-
field images can be on par with the improvement achieved in confocal microscopy.

Recent developments in fluorescence microscopy lead to a number of super-resolution
techniques, which can provide substantially larger resolution improvement compared to
widefield deconvolution microscopy [5]. One of these advanced methods is Structured
Illumination Microscopy (SIM) [6–10]. SIM offers sectioning comparable to confocal mi-
croscopy and a resolution which is up to a factor of two better than the resolution in
widefield microscopy. The set of raw images from which the final SIM image is recon-
structed is generated by exposing the sample with a sequence of non-uniform illumina-
tions. The acquired images are processed by a reconstruction algorithm, which depends
on the type of applied non-uniform illumination, for providing the final high resolution
SIM image.

In this study we compare two newly emerged reconstruction methods for SIM data:
the joint Richardson-Lucy deconvolution (jRL) [11, 12] and the pattern-illuminated Fourier
Ptychography (piFP) [13, 14]. Both methods can process SIM data acquired under any
type of structured illumination and widefield detection. However, here we focus solely
on the two most frequently used types - sinusoidal (line) and multi-spot illumination.

The sinusoidal excitation was used for the first demonstration of SIM and it still re-
mains the most commonly used illumination mode due to its time efficiency. It provides
the fastest SIM imaging, since only 15 sinusoidal illuminations are required for conven-
tional 3D SIM reconstruction by the generalized Wiener filter. The accurate knowledge
of the shift between the illuminations is essential for the generalized Wiener filter recon-
struction [15]. Unfortunately, the noise in the images hampers precise estimation of this
shift, which often leads to artefacts in the reconstructed image. Alternative reconstruc-
tion methods, which are based on a Bayesian treatment of the given inverse problem,
may help to avoid the artefacts associated with the inaccurate shift of the spectral com-
ponents [16–19]. The jRL and piFP algorithms applied to SIM measurements also fit
within the Bayesian inversion framework. In fact, if only 2D imaging is considered, the
piFP algorithm is identical to the maximum a posteriori probability image estimation
algorithm described in Ref.[18], with the only difference in sequential instead of the si-
multaneous update of the images, and the form of applied regularization.

SIM with multi-spot illumination requires a larger number of excitation patterns,
however, it provides better depth discrimination and, thereby, enables the imaging of
thicker samples [20]. This variety of super-resolution SIM is closely related to the Image

Laurent
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Scanning Microscopy (ISM) – a method that is based on the combination of confocal
microscopy and widefield detection [21, 22]. In order to speed up the acquisition and
processing, ISM with multi-spot illumination was developed [20], and several different
all-optical implementations of the ISM principle were realized [23–25]. In practice, ISM
methods offer the lateral resolution which is about a factor of

p
2 better than the reso-

lution in widefield microscopy, although in principle the spatial frequency bandwidth
is increased with a factor of two. Deconvolution of the multi-spot SIM measurements
by the jRL and piFP algorithms may be expected to yield the full factor of 2 resolution
improvement over widefield microscopy, which is comparable to SIM. In this paper we
formulate the generalized maximum likelihood estimation (MLE) treatment of the im-
age reconstruction problem in SIM. Furthermore, we consider several particular cases of
MLE applied in SIM, including the above mentioned jRL and piFP methods. The qual-
ity of the images reconstructed by these methods is compared in terms of the achieved
resolution improvement, noise enhancement and inherent artefacts. One of the major
differences between the piFP and jRL is in the underlying noise model: the piFP algo-
rithm is derived assuming a read-out noise only model, whereas the jRL algorithm is
derived assuming a shot noise only model. At the same time, the increasingly popular
sCMOS cameras exhibit both types of noise. We study which of the algorithms would
be best suited for the these cameras. Finally, we benchmark the performance of the jRL
and piFP algorithms with the generalized Wiener reconstruction from a state-of-the-art
commercial SIM microscope.

4.2. THEORY

4.2.1. IMAGE RECONSTRUCTION IN SIM WITH MLE

I N SIM an object x̂ is imaged under a number of non-uniform illuminations pi (i =
1..N ). We model the image formation in SIM as a linear, shift-invariant process occur-

ring in the presence of mixed Poisson-Gaussian noise. Each expected diffraction-limited
image µi corresponding to illumination pattern pi is described as follows:

µi =
(
x̂ ·pi

)⊗h, (4.1)

where h is the PSF of the microscope and⊗ denotes the convolution operator. The actual
acquired image di differs from the expected image by noise n:

di =
(
x̂ ·pi

)⊗h +n. (4.2)

We assume that the PSF is normalized to unity and that the sum of all illumination pat-
terns is uniform:

N∑
i=1

pi = 1. (4.3)

Image reconstruction in SIM can then be formulated as an inverse problem, where
a high resolution object estimate x is calculated from a set of lower resolution object
observations di (i = 1..N ). The presence of noise and the finite spatial frequency band-
width of the microscope’s Optical Transfer Function (OTF) make this problem ill-posed
and, hence, direct inversion of equation 4.2 does not lead to a unique solution. One of
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the ways to handle such an ill-posed inverse problem is to apply a statistical approach
in the form of maximum likelihood estimation (MLE). MLE has been previously used
for SIM reconstruction under the assumption that only Gaussian noise [17–19] or only
Poisson noise [12] is present in the acquired images. Here we formulate a generalized
MLE treatment for the reconstruction in SIM, which takes into account both Poisson
and Gaussian noise.

According to Bayes’ theorem, the probability of an estimate x being the origin of the
acquired data di is given by:

P (x|d1,d2, ...,d N ) = P (d1,d2, ...,d N |x) ·P (x)

P (d1,d2, ...,d N )
. (4.4)

The sought-for high resolution SIM image is the estimate x which maximizes this prob-
ability, or, equivalently, minimizes its negative logarithm:

E =−logP (d1,d2, ...,dN |x)− logP (x) = L+F, (4.5)

where we have omitted the logarithm of P (d1,d2, ...,dN ), since it does not depend on x.
The first term of the error function E is the log-likelihood function L, which we will de-
rive from the corresponding probability distribution. The probability distribution can
be calculated as a convolution of the Poisson distribution, representing the shot noise,
and the Gaussian distribution, representing the camera read-out noise. In order to sim-
plify the calculations we use an analytical approximation to the mixed noise probability
distribution, which was proposed by Huang et al. [26]:

P
(
d |µ,σ2)= e−(µ+σ2)(µ+σ2

)d+σ2

Γ
(
d +σ2 +1

) . (4.6)

Equation 4.6 describes the probability of observing an image d given the expected image
µ and the variance of the read-out noise σ2. Γ(t ) stands for the Gamma function. Taking
into account the whole set of acquired images di , the corresponding joint log-likelihood,
which includes both noise types, is expressed as:

L =
N∑

i=1

[(
µi +σ2)− (

di +σ2) log
(
µi +σ2)+

log
(
Γ

(
di +σ2 +1

))]
.

(4.7)

The second term of equation 4.5 is the regularization function F that represents prior
knowledge of the object. In practice it is used to overcome the ill-posed nature of the
optimization problem in view of the band-limited OTF. Regularization functions can take
various forms, depending on the available prior information about the object.

In order to find the ML estimate x, the error function E is minimized by a local itera-
tive algorithm according to the following equation:

xk+1 = xk −βk ∂E

∂xk
. (4.8)



4.2. THEORY

4

63

In case F = 0, the derivative of the error function with respect to x is calculated as:

∂E

∂x
= ∂L

∂x
= 1−

N∑
i=1

(
di +σ2

µi +σ2 ⊗hT ·pi

)
, (4.9)

where it is used that the sum of all illumination patterns is uniform and that the PSF is
normalized to unity. The transpose of the PSF is denoted as hT .

The general MLE approach presented above can be transformed into different recon-
struction algorithms depending on the noise characteristics of the acquired images, the
choice of the regularization function F and the update step β. Despite having a com-
mon origin, these algorithms give rise to considerably different reconstructions. In the
following sections we will discuss several particular cases of MLE applied to SIM recon-
struction, which are derived for different noise models and various forms of the update
β. In this work we restrict our considerations to non regularized problems (F = 0) and
use early termination of the iterative reconstruction algorithms to obtain regularization.

4.2.2. PATTERN-ILLUMINATED FOURIER PTYCHOGRAPHY
Under the assumption of Gaussian noise the error function E takes the simplified least-
squares form:

E = 1

2σ2

N∑
i=1

(
di −µi

)2. (4.10)

The optimization of a least-squares function carried out according to equation 4.8 and
using a constant step size β is nothing else than the steepest descent method.

If the update step of the steepest descent algorithm is split into three separate steps
and the object is updated sequentially for each illumination pattern, one arrives at the
pattern-illuminated Fourier Ptychography (piFP) algorithm [13]. The sequential update
is expected to accelerate the convergence of the algorithm by a factor of N [27, 28]. In
our earlier work we explained the connection between the steepest descent and the piFP
algorithms and experimentally demonstrated the resolution improvement in 2D SIM by
piFP [14]. The piFP algorithm can be also seen as a particular case of the Landweber
method [29], extended for the case of multiple-image deconvolution. As a non regular-
ized linear least squares method piFP provides a computationally simple solution to the
given inverse problem.

4.2.3. JOINT RICHARDSON-LUCY DECONVOLUTION
The Richardson-Lucy (RL) algorithm was originally developed for restoration of a single
blurred image, corrupted by Poisson noise [30, 31]. An update rule for the conventional
RL algorithm is obtained by taking the step sizeβRL equal to the local value of the sought-
for object x:

xk+1 = xk ·
(

d

µ
⊗hT

)
. (4.11)

Recently, Ingaramo et al. proposed to combine multiple images with complementary
strengths through a joint Richardson-Lucy algorithm (jRL) [11]. This multiple-image jRL
deconvolution was first used to reconstruct images in multi-spot SIM by Strhlohl et al.
[12].
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The update rule for the jRL algorithm in case of mixed Poisson-Gaussian noise is
found by setting βRL = x in equations 4.8 and 4.9:

xk+1 = xk ·
N∑

i=1

(
di +σ2

µi +σ2 ⊗hT ·pi

)
. (4.12)

An advantage of using the mixed noise model instead of the Poisson noise model be-
comes apparent when acquired images have small photon counts, i.e. di ¿ σ2. In this
case the update step 4.12 becomes idle and noise amplification for low signal levels is
suppressed.

4.2.4. NEWTON-RAPHSON UPDATE STEP
The step size β can be modified in order to improve convergence speed of the steepest
descent method. Such an improvement has been demonstrated in MLE SIM reconstruc-
tion with Barzilai-Borwein [18] and Newton-Raphson (NR) [14] approaches. According
to the NR rule, the step size should be taken as the inverse of the diagonal part of the
Hessian matrix: βN R = H−1. In case of mixed noise, the diagonal elements of the Hes-
sian matrix are:

H = ∂2E

∂x2 =
N∑

i=1

(
di +σ2(
µi +σ2

)2 ⊗ (hT )2 ·p2
i

)
. (4.13)

It is also possible to interpolate between the NR and jRL algorithms by choosing a diag-
onal update matrix which has different entries for each pixel:

βRLN R = xp
1+H 2x2

. (4.14)

In limiting cases this mixed step size reduces to NR and jRL updates:

βRLN R =
{

x =βRL , when H x ¿ 1

H−1 =βN R , when H x À 1.
(4.15)

The interpolation algorithm deliberately uses a smaller step size than the jRL algo-
rithm. Therefore, this interpolation algorithm is anticipated to be slower than the jRL
algorithm, but is expected to outperform it in terms of noise suppression when acquired
images are highly distorted by both Poisson and Gaussian noise.

4.3. SIMULATION RESULTS

I N order to test the performance of various MLE algorithms in simulations, we use a
resolution target of 512×512 pixels containing different objects, such as points, cross-

ing lines, uniform areas and periodic structures. The pixel size of the resolution target is
taken equal to λ/16N A, where λ is the emission wavelength and N A - numerical aper-
ture of the objective. The simulation is performed using a vectorial PSF [32, 33] which is
calculated for N A = 1.4 and excitation/emission wavelengths of 488/518 nm.

Illumination patterns at the sample plane pi are obtained by convolving the binary
multi-spot patterns with the excitation PSF. A single binary multi-spot pattern is de-
signed as an array of one-pixel spots arranged in a square lattice with periodicity of 12
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pixels, which corresponds to a spatial frequency that is 2/3 times the widefield diffrac-
tion limit at 2N A/λ. This pattern is translated in steps of one pixel in order to form the
full set of 144 multi-spot patterns and provide the uniform object illumination. The to-
tal intensity accumulated over all illuminations amounts to 2.5×104 photons per pixel.
Gaussian read-out noise with equivalent variance of σ2 = 7 photons and Poisson noise
corresponding to the photon counts are added to each simulated image di . A separate
widefield image is used as an initial estimate of the object under reconstruction. We
found that a uniform object can also be used as initial estimate and leads to only minor
changes in the outcome of the simulations.

In order to regularize the considered MLE problem, we terminate the iterative pro-
cess before convergence to numerical precision. In the case of linear algorithms with
the Gaussian noise approximation (piFP and NR with Gaussian noise model), we found
5−25 iterations to be optimal, since further increase of the number of iterations Ni ter

leads to highly visible noise amplification in the reconstructed images. The absolute er-
ror, calculated as the difference between the reconstructed image and the ground truth
(averaged over all pixels), reaches ∼ 1.5×103 photons per pixel at the chosen stopping it-
eration. The algorithms which are based on the assumption of Poisson or mixed Poisson-
Gaussian noise (jRL, interpolated jRL-NR, NR with mixed noise model) converge con-
siderably slower. In order to reach absolute error levels similar to the one achieved in
piFP algorithm, about 100-300 iterations have to be applied. We have chosen a fixed
number of 200 iterations as stopping criterion for these algorithms. The computation
takes on the order of 3-7 seconds per iteration (3.3 s for piFP, 4 s for jRL, and 7 s for
jRL-NR) on an Intel Xeon E5-1620 v2 CPU with 3.70 GHz clock speed. The simulation
is implemented in MATLAB (Mathworks, USA), the corresponding software package can
be found at http://www.diplib.org/add-ons.

Examples of the images reconstructed using jRL and piFP algorithms are given in
Fig. 4.1. The jRL reconstruction provides higher resolution improvement for point ob-
jects compared to the piFP reconstruction. However, the piFP reconstruction exhibits
higher resolution in periodic structures. A major advantage of the jRL algorithm is the
positivity constraint - the reconstructed image is always positive provided that the ini-
tial estimate did not have any negative values. The piFP reconstruction, on the contrary,
results in a considerable number of non-physical negative values. Additionally, recon-
struction artefacts in the form of amplified noise are more pronounced in piFP recon-
struction. Ringing artefacts are characteristic to both methods, but are more expressed
in jRL reconstruction. A combination of piFP and jRL methods can help to utilize the
strengths of both algorithms. As seen in Fig. 4.1(e), by using an output of several piFP
iterations as an initial estimate for the jRL algorithm, one can achieve higher resolution
for both isolated and periodic objects.

4.3.1. QUANTITATIVE ASSESSMENT OF THE RECONSTRUCTED IMAGES

Quantitatively the quality of reconstructed images was evaluated by two parameters - the
signal-to-noise ratio (SNR) in the uniform white area and the full width at half maximum
(FWHM) of the point objects. The FWHM is calculated from the standard deviation of the
Gaussian function fitted to the isolated point objects in the reconstructed images. It is
important to note that the FWHM measure does not provide a complete representation

http://www.diplib.org/add-ons
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(a)

(b)

(c)

(d)

(e)

Figure 4.1: Comparison of the jRL and piFP algorithms in simulations. a) Simulated resolution target with
512×512 pixels of 23 nm. b) Widefield image. c) jRL reconstruction (200 iterations). d) piFP reconstruction (20
iterations), negative pixels are clipped. e) Combination of the jRL and piFP methods: the outcome of the 20
piFP iterations was used as an initial estimate for the 100 iterations of the jRL algorithm.



4.3. SIMULATION RESULTS

4

67

of resolution in the reconstructed image [34]; it can only be used as a resolution indicator
for very sparse samples or well-isolated objects. The results for several MLE methods are
summarized in Fig.4.2.
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Figure 4.2: Quantitative comparison of various MLE methods. The FWHM is measured for point objects of the
reconstructed resolution target and the SNR is measured in the bright uniform area of the reconstructed reso-
lution target (shown in Fig4.1a). The relation between the SNR and the FWHM displays the trade-off between
the image sharpening and noise amplification.

Assessment of the quality of reconstructed images is not a trivial task. There is no
standard procedure that estimates how well the reconstructed image corresponds to the
ground truth and how severe the reconstruction artefacts are. In this work we have cho-
sen the so-called relative energy regain G [35] to further assess the performance of the
reconstructions. The relative energy regain is calculated from the Fourier transforms of
the ground truth of the object (Ob j ect ) and the reconstructed image (E sti mate), using
the Holmes error energy ∆E [36]:

∆E = |Ob j ect −E sti mate|2, (4.16)

G = |Ob j ect |2 −∆E

|Ob j ect |2 . (4.17)

The curves shown in Fig. 4.3 correspond to the profiles of the relative energy regain (ver-
tical profiles at the horizontal spatial frequency component equal to zero). The shaded
error bars show the standard deviation over the 50 different noise realizations. The
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value of G = 1 corresponds to the ideal reconstruction, whereas negative values of the
G profiles indicate artefact formation. As a linear method, piFP can not produce non-
zero values beyond the theoretical frequency cutoff, therefore, the G function in case
of the piFP reconstruction is close to zero in the region of spatial frequencies above
fcuto f f = 4N A/λ. The nonlinear jRL method is not band-limited and will produce val-
ues above the theoretical frequency cutoff; some of these values will lead to errors, which
results in a less smooth profile of the G function.
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Figure 4.3: Profiles of the relative energy regain function in case of the piFP and jRL reconstructions are used
for assessment of the reconstruction quality.

4.3.2. OBJECT-DEPENDENT RESOLUTION IMPROVEMENT

Simulated reconstructions of the resolution target indicate that the resolution improve-
ment achieved with MLE methods can be object dependent. In order to study this phe-
nomenon we have computed the Modulation Transfer Function (MTF), which character-
izes the frequency content of the reconstructed image, in two distinct cases. First, a line
with a thickness of one pixel (λ/16N A) was used as an object. The MTF was measured
by taking the Fourier transform of a line profile in the reconstructed images. Figure 4.4
displays the resulting MTF curves for each iteration of the piFP(Fig.4.4a) algorithm and
each 4th iteration of the jRL(Fig.4.4b) algorithm. These MTF curves represent the fre-
quency content of isolated objects in the reconstructed images. The MTFs at the corre-
sponding stopping iterations are shown in red. The dotted line indicates the theoretical
frequency cut-off calculated from the pitch of the multi-spot illumination patterns and
corresponding to 5/3 times the widefield diffraction limit of 2N A/λ. In jRL reconstruc-
tions we observe non-zero MTF values beyond the theoretical frequency cut-off of SIM
imaging ( fcuto f f = 4N A/λ). Hence, out-of-band frequency recovery is possible for well-
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Figure 4.4: Development of the MTF curves which represent the frequency content of isolated objects during
the piFP(a) and jRL(b) iterations. MTFs at the stopping iterations are shown in red. The dotted line indicates
the theoretical frequency cut-off corresponding to the periodicity of the multi-spot illumination patterns. c)
Object-dependent resolution improvement is visualized in the comparison of the "isolated" and "periodic"
MTFs for jRL and piFP algorithms. MTF of the widefield image is given for reference.
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separated objects. The reconstruction of out-of-band information has been previously
described in the context of maximum likelihood deconvolution of widefield images, and
originates from the available prior knowledge of the object [35].

Next, sine patterns with different spatial frequencies in the interval [0,4N A/λ] were
used as objects. The modulation of sine patterns in the reconstructed images was mea-
sured at the stopping iteration. The resulting MTF curves represent the frequency con-
tent of periodic objects in the reconstructed images. The "periodic" MTF curves for jRL
and piFP methods are compared to their "isolated" counterparts in Figure 4.4c. The piFP
method resolves equally well periodic and isolated structures, whereas the jRL method
provides considerably higher resolution in isolated objects compared to the periodic
ones. The difference between the two MTF curves of the jRL method is particularly
evident in the region above the widefield imaging frequency cut-off f > 2N A/λ. The
shoulder at the normalized frequency of 0.6-0.9 in the "periodic" MTF curve of the jRL
method is due to the artefact that appears as edge corrosion and sharpening of the peaks
of the sine pattern.

4.4. EXPERIMENTAL RESULTS

E XPERIMENTAL data sets were acquired on a custom-built SIM setup - an inverted
Olympus IX71 microscope complimented with a digital micro-mirror device (DMD)

in the illumination path. Structured illumination is provided by the fast and flexible
DMD, and fluorescence from the sample is recorded in a widefield mode by the sC-
MOS camera (Orca Flash 4.0, Hamamatsu Photonics, Japan). Further technical details
about the optical design of the microscope can be found in our earlier work [37]. The
following experimental parameters were used for imaging: 60× /0.7 objective, 488/520
nm excitation/emission wavelength, 108 nm camera pixel size and 137 nm DMD pixel
size (back-projected to the sample plane). A fixed sample containing bovine pulmonary
artery endothelial (BPAE) cells, in which F-actin is stained with Alexa Fluor 488 phal-
loidin (Invitrogen, CA, USA), is chosen as a test object. Multi-spot patterns with period-
icity of 10 DMD pixels were used to illuminate the sample. The widefield image obtained
by summing up the 100 raw images acquired by the sCMOS camera contains significant
fixed pattern noise, which is found to have a negative impact on the reconstruction. In
order to prevent this effect a uniform object was used as an initial estimate of the high
resolution reconstruction. A comparison of the images reconstructed by the piFP (15 it-
erations) and the jRL (100 iterations) algorithms is given in Fig.4.5. Both reconstructed
images display resolution improvement compared to the widefield image. At the same
time, since the structure of the sample is fairly dense, the piFP method provides slightly
higher resolution improvement than the jRL method.

4.4.1. READ-OUT NOISE OF THE SCMOS CAMERA

One of the properties of sCMOS cameras is the presence of pixel-dependent gain, read-
out noise and offset. We measured the variance of the pixel-dependent read-out noise
by taking the variance of the intensities for each pixel over 103 dark images. The standard
deviation of the pixel-dependent read-out noise has a fixed pattern with mean value of
σ = 1 photo-electron and a number of "hot" pixels (∼ 0.3% of all camera pixels) with a
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Figure 4.5: Comparison of SIM images reconstructed by jRL and piFP algorithms. A fixed sample containing
BPAE cells, in which F-actin is stained with Alexa Fluor 488 phalloidin, was imaged using a 60×/0.7 air objective
with DMD-based multi-spot illumination and sCMOS based image acquisition.

read-out noise on the order of σ = 8−10 photo-electrons. In order to examine to what
extent the measured read-out noise standard deviation pattern of the sCMOS camera in-
fluences the reconstruction, we have tested the performance of the MLE algorithms with
the mixed noise model (jRL and NR), where the uniform Gaussian noise variance was re-
placed by the measured fixed Gaussian noise variance pattern. As can be seen in Fig.4.6,
applying the measured fixed noise pattern does not improve the reconstruction. On the
contrary, the overall signal-to-noise ratio is deteriorated and, moreover, "hot" pixels of
the read-out noise variance pattern result in circular artefacts. Hence, the spatially vary-
ing readout noise for sCMOS cameras is preferably not taken into account in the jRL or
NR type of MLE algorithms.
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Figure 4.6: jRL reconstructions taking the spatially dependent readout noise variance of the sCMOS camera
into account. a) Reconstruction with Poisson noise assumption. b) Reconstruction using the mixed noise
assumption with the measured read-out noise variance pattern. Reconstructed image displays an overall de-
terioration of the SNR and circular artefacts caused by "hot" pixels in the read-out noise variance pattern (ex-
amples indicated by the yellow arrows). c) The measured read-out noise standard deviation pattern of the
sCMOS camera.

4.4.2. COMPARISON TO THE PERFORMANCE OF COMMERCIAL SIM MICRO-
SCOPE

Fixed BPAE cells stained with an anti–β-tubulin mouse monoclonal antibody for labeling
microtubules (Invitrogen, CA, USA) were imaged with a Nikon N-SIM microscope. Imag-
ing was performed using the 2D SIM mode, 488 nm excitation laser, 100×/1.49 objective
and an EM-CCD camera with zero read-out noise (Andor iXon 897, Andor Technology,
UK). The raw data from a Nikon N-SIM microscope was processed by the jRL and piFP al-
gorithms and compared to the generalized Wiener reconstruction provided by the man-
ufacturer. As can be seen in Fig.4.7, the performance of the presented MLE algorithms
is comparable to the performance of the original N-SIM reconstruction. However, piFP
and jRL algorithms produce slightly more noisy images with visible edge ringing, since
no regularization or apodization was applied in these algorithms. The quality of SIM
reconstructions depends on the sparsity of the sample, with dense parts of the sample
being more strongly affected by noise amplification.

Although from this experiment there is no apparent advantage of using piFP or jRL
algorithms for reconstruction of the line-SIM data, the benefit of these methods is that
they allow reconstruction of SIM images acquired under different types of illumination,
such as multi-spot or random (speckle) illumination.

4.5. CONCLUSION

W E formulated a generalized MLE approach to the image reconstruction problem
in SIM, which takes into account both Poisson and Gaussian noise. The choice of

update form in the iterative solution to the MLE problem, the noise model and the regu-
larization function defines the exact form of the MLE algorithm. In this work we focused
on two special cases - the recently developed piFP and jRL methods. These algorithms
are based on different noise models and employ different update steps, which leads to
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Figure 4.7: The performance of jRL (c) and piFP (d) algorithms is comparable to the performance of com-
mercial Nikon N-SIM reconstruction (b). A fixed sample containing BPAE cells with labeled microtubules was
imaged using a 100× /1.49 objective and an EM-CCD camera with zero readout noise. Top row (i) displays
sparse part of the image, bottom row (ii) displays dense part of the image. A widefield image (a) is given for
comparison.
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substantial differences in the characteristics of the reconstructed images.
When jRL is applied, the apparent resolution improvement in periodic or dense ob-

jects is much smaller than the resolution improvement in well isolated objects, such
as sparsely distributed points. This object-dependent resolution improvement is con-
firmed by studies of the MTF curves corresponding to these different types of objects.
The MTF curve derived from the line response has higher values than the MTF curve
derived from periodic objects. The difference is especially pronounced in the region
beyond the widefield frequency cut-off, where jRL provides only marginal resolution im-
provement for periodic objects. At the same time, in sparse/isolated objects we observed
the reconstruction of spatial frequencies beyond the theoretically predicted SIM cut-off
frequency. Such reconstruction of out-of-band information is made possible by the prior
information about the object.

In the case of piFP MTF curves for isolated and periodic objects are similar to each
other, which leads to the conclusion that piFP provides uniform resolution improve-
ment. In comparison to the jRL method, the resolution improvement achieved by ap-
plying piFP is lower in isolated objects and higher in periodic/dense objects.

Reconstruction artefacts are present in both methods. The piFP method produces a
large amount of non-physical negative values and, additionally, results in higher noise
amplification, since its MTF curves display higher values in the region between the wide-
field and SIM cut-off frequencies. The ringing artefact, which is inherent to both meth-
ods, can be explained by the sharp drop in the shape of the piFP MTF curves and jRL
"periodic" MTF curve [38]. Early termination of the iterative process can be used to re-
duce the ringing effect at the expense of a smaller resolution improvement. Alternatively,
a regularization function can be added to the iterative update algorithm.

Computationally, jRL reconstructions take approximately 5-10 times longer than piFP
reconstructions, since on the order of 100-300 iterations are required for jRL, whereas
5-25 iterations are typically sufficient for piFP.

The final choice of the reconstruction algorithm depends on the object under study
and on the type of noise that is dominant in the images. In case of very low photon
counts, when the read-out noise becomes more significant, the algorithms based on the
assumption of the Poisson noise will not perform well and algorithms with the Gaussian
or mixed noise models should be applied. Finally, a well-matched regularization can
enhance the reconstruction, reduce noise amplification and eliminate artefacts.
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5
ADAPTIVE STRUCTURED

ILLUMINATION MICROSCOPY FOR

PHOTOBLEACHING REDUCTION

Photobleaching is a major factor limiting the observation time in fluorescence microscopy.
We achieve photobleaching reduction in Structured Illumination Microscopy (SIM) by lo-
cally adjusting the illumination intensities according to the sample. Adaptive SIM is en-
abled by a digital micro-mirror device (DMD), which provides a projection of the grayscale
illumination patterns. We demonstrate a reduction in photobleaching by a factor of three
in adaptive SIM compared to the non-adaptive SIM based on a spot grid scanning ap-
proach. Our proof-of-principle experiments show great potential for DMD-based micro-
scopes to become a more useful tool in live-cell SIM imaging.

Parts of this chapter have been submitted as N. Chakrova, A. Soler Canton, C. Danelon, S. Stallinga and B.
Rieger to Biomed. Opt. Express (2016) [1].
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5. ADAPTIVE STRUCTURED ILLUMINATION MICROSCOPY FOR PHOTOBLEACHING

REDUCTION

5.1. INTRODUCTION

T HE field of fluorescence microscopy experienced rapid development in the past two
decades. A number of techniques that outperform standard widefield fluorescence

microscope in terms of resolution were developed. These super-resolution methods
can be roughly divided in three groups: localization microscopy, which relies on photo-
switchable fluorophores and localization of single molecules [2–4], structured illumi-
nation microscopy, which employs a non-uniform illumination [5–10], and stimulated
emission depletion microscopy (STED), which uses partial quenching of the fluorophores
to narrow down the point spread function [11]. An ideal super-resolution fluorescence
microscopy technique should allow biologists to observe live cells with improved reso-
lution over extended periods of time. In reality, however, the resolution improvement is
achieved at the cost of longer acquisition times, higher illumination intensities, or higher
cumulative illumination doses. These conditions lead to enhanced photobleaching of
the fluorophores and increased phototoxicity for the cells under study, which poses lim-
itations on live-cell imaging. Therefore, deceleration of the photobleaching process is
an important step for improvement of super-resolution microscopy.

In this work we address the issue of photobleaching reduction in Structured Illu-
mination Microscopy (SIM). SIM is one of the most promising candidates for live-cell
imaging amongst the super-resolution techniques [12–14]. It offers a rather modest res-
olution improvement of up to 2× compared to standard widefield imaging (for linear
SIM), however, it is compatible with most of the standard fluorescent dyes and requires
less illumination light than localization microscopy or STED [15].

Unlike widefield microscopy, where the sample illumination is uniform, in SIM the
sample is exposed to a series of non-uniform illumination patterns. The spatial fre-
quency spectrum of the illumination patterns is convolved with that of the sample, which
makes the high spatial frequency components of the sample observable. The final high
resolution SIM image is reconstructed from the entire series of acquired images corre-
sponding to the different illumination patterns used. Besides the classic line grid pat-
terns, speckle[16] and multi-spot[17] patterns have been applied in various realizations
of the resolution-doubling SIM.

In one of the SIM implementations a spatial light modulator (SLM) – it may be either
a digital micro-mirror device (DMD) or a liquid-crystal-on-silicon SLM (LCOS-SLM) – is
used for projection of the illumination patterns [17–19]. The SLM provides full spatial
and temporal control over the illumination intensity. Although technically SLM also al-
lows the projection of grayscale patterns, only binary SLM patterns have been used in
SIM until now. Here we demonstrate how grayscale patterns can be used for reduction
of the illumination intensity in DMD-based SIM microscopes.

The idea to reduce photobleaching and phototoxicity by locally adjusting the illumi-
nation intensity dose based on the sample structure was first implemented in confocal
microscopy. An acoustic optical modulator was introduced into the illumination path
of the confocal microscope to reduce the exposure time (and, hence, the illumination
intensity) in the background and bright foreground areas of the sample [20, 21]. Another
implementation was made in the Programmable Array Microscope (PAM) [22], a micro-
scope which is equipped with an SLM in its primary image plane. PAM has a double-pass
optical configuration, which means that both excitation and emission light pass through
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the SLM [23, 24]. Multiple SLM illumination patterns are projected onto the sample dur-
ing one camera exposure time. By applying binary masks to the projected SLM patterns,
one can reduce the exposure time in certain areas of the sample. Both confocal and PAM
implementations provide optically sectioned images with reduced photobleaching. Ad-
ditionally, variations of adaptive illumination were used for improving the sensitivity in
two-photon microscopy[25] and for photobleaching reduction in STED microscopy[26].

We bring the idea of reducing the photobleaching by locally adjusting the illumina-
tion intensity one step further and apply it to the resolution-doubling SIM microscopy.
In our custom-built DMD-based microscope multi-spot illumination patterns are used
together with a maximum-likelihood estimation reconstruction [27]. In order to regulate
the illumination intensity dose, the multi-spot illumination patterns are weighed with a
grayscale mask, which is calculated from an initial widefield image. We describe two
grayscale mask designs and demonstrate experimentally the corresponding reduction
in photobleaching. Our proof-of-principle experiments were conducted on fixed cells as
a first step towards live-cell SIM imaging with reduced photobleaching.

5.2. PRINCIPLES OF ADAPTIVE SIM

T HE problem of photobleaching in fluorescence microscopy can be addressed from
two sides. At the stage of sample preparation, the robustness of fluorophores can be

improved by suppressing their photobleaching pathways. This approach is fluorophore-
specific and requires the understanding of photobleaching kinetics, which can easily
become a rather complex problem [28]. Another way to address the issue is to reduce
the overall illumination dose received by the sample. This approach is a universal mea-
sure that can be applied to all types of samples, regardless of the fluorescent dye and its
photobleaching pathways. In this work we do not attempt to study the photobleaching
behavior of the fluorophores, but seek to improve SIM by making it less aggressive for
biological samples in terms of the amount of illumination light.

In order to reduce the overall illumination dose one can locally adjust either the ex-
posure time or the illumination intensity. In our implementation the exposure time re-
mains uniform over the whole field of view, and the illumination intensity is adjusted by
applying grayscale masks to the illumination patterns. Technically, this is performed by
projecting grayscale images with the DMD. The intensities of the illumination patterns
should have an inverse dependency on the sample brightness: the brighter the sam-
ple area, the lower the illumination intensity that will be applied to this area. Such an
approach results in a more uniform signal-to-noise ratio (SNR) across the whole image
(except for the background areas, where SNR = 0). In other words, SNR in bright regions
of the image is sacrificed for the possibility to image the sample longer.

SIM images with adaptive grayscale illumination patterns are acquired in the follow-
ing way. First, a widefield snapshot is taken at low intensity. A grayscale mask is calcu-
lated from this widefield image according to one of the schemes that will be described
in section 5.2.1. The standard binary multi-spot illumination patterns are weighed with
this mask image, and the SIM data is acquired with the resulting grayscale multi-spot il-
lumination. The final SIM image is reconstructed using the pattern-illuminated Fourier
Ptychography (piFP) algorithm, which is equivalent to non-regularized linear least-squares
[27, 29]. For each time point in time-lapse SIM imaging a new widefield image is taken
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and a new mask is calculated, in order to adapt the mask for possible changes and move-
ments in the sample. A block diagram describing time-lapse adaptive SIM is shown in
Fig.5.1.

acquire wide�eld image

generate gray-scale mask 

generate gray-scale 
illumination patterns

acquire SIM image

Figure 5.1: Block diagram of time-lapse adaptive SIM.

5.2.1. CALCULATION OF THE ILLUMINATION MASK
Various schemes can be used to generate grayscale masks for the illumination patterns.
One of the most straightforward ways is to use a linear relationship between the inten-
sities in the widefield image I and the weight of the grayscale mask w , as shown in
Fig.5.2(a). The areas of the widefield image with intensities lower than Imi n are iden-
tified as background, and the corresponding areas in the sample are not illuminated, i.e.
weight of zero is applied in these areas. At the same time, lower limit for the weight wmi n

has to be set in order to avoid insufficient illumination of the brightest areas of the sam-
ple, corresponding to areas in the widefield image with intensities higher than Imax . The
upper and lower boundary values for the intensity and weight have to be set empirically
for a given sample.

In reality the relationship between the illumination intensity and the photobleach-
ing rate is often nonlinear. An improved method for calculating the grayscale mask takes
this fact into account by establishing inverse proportionality between the intensities in
the widefield image and the weight of the grayscale mask as shown in Fig.5.2(b).

5.3. MATERIALS AND METHODS

5.3.1. EXPERIMENTAL SETUP

T HE key element of our home-built SIM microscope is the DMD (Vialux, Germany).
The DMD supports projection of 8-bit grayscale images at 290 Hz frame rate. The

device is placed in the secondary image plane of an inverted widefield Olympus IX71 mi-
croscope. Structured illumination is generated by projecting illumination patterns of the
DMD onto the sample via a demagnifying optical relay. Details on the design and layout
of the optical setup can be found in our earlier work [30]. Experiments were performed
using a 60×/0.7 air objective and 488/520 nm excitation and emission wavelengths. The
sizes of the DMD pixel and the camera pixel back-projected to the sample plane are 137
nm and 108 nm, respectively.

The illumination pattern at the DMD is generated as an array of spots arranged in
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Figure 5.2: Two approaches for grayscale mask generation. In mask (a) the weight of the grayscale mask de-
pends linearly on the intensities in the widefield image. In mask (b) the weight of the grayscale mask is in-
versely proportional to the intensities in the widefield image. Boundary values Imi n and Imax are found em-
pirically for a given sample.

a square grid with periodicity of 10 DMD pixels. This multi-spot pattern is translated
with one DMD pixel per step and a camera frame is taken at each position of the pat-
tern. The final SIM image is reconstructed from a dataset of 100 raw frames using the
piFP algorithm, which is implemented in MATLAB (Mathworks, USA) in the same way
as described in [27, 29].

5.3.2. MAPPING THE DMD ONTO THE CAMERA

For adaptive SIM it is essential to establish precise mapping between the DMD chip and
the camera chip. This mapping is done by projecting a multi-spot illumination pattern
onto a thin (∼ 110 nm), spatially homogeneous fluorescent layer, which is produced as
described in Ref.[31]. The resulting camera image contains an array of spots, each cor-
responding to a single DMD pixel. By extracting the coordinates of spots centers in the
camera image we find the correspondence between DMD pixels and their image posi-
tions in the camera chip plane [30].

5.3.3. SAMPLE PREPARATION

Human Embrionic Kidney 293T (HEK 293T) cells were cultured on 100-mm plates (SARST-
EDT) at 37 ◦C with 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO)
supplemented with 10% fetal bovine serum (FBS, GIBCO). At about 80% confluency the
cells were washed once with phosphate-buffered saline (PBS, pH 7.4, GIBCO), treated
with 0.25% trypsin-EDTA (Gibco) and collected in 1 mL of growth medium.

Methanol fixation and DNA staining were performed in the following way. Glass cov-
erslips (#1.5, Menzel Glaser) were sterilized in 70% ethanol, washed with milli-Q water
and dried. The coverslips were then incubated with 0.01% Poly-L-Lysine (PLL, Sigma
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Aldrich) in PBS for 5 minutes at room temperature. PLL-coated coverslips were placed
at the bottom of a six-well plate and 50 µL of the HEK 293T cell suspension were added.
After 24 hours culture, the growth medium was removed, the cells were washed once
with PBS and incubated for 10 minutes at room temperature with 100% methanol. Af-
ter methanol fixation, the solvent was removed and the cells were washed once with
PBS. Fixed cells were then incubated for 30 minutes at 37 ◦C with 0.2 U/µL RNAse ONE
(Promega) to avoid background signal from labelled RNA and washed with PBS and
Milli-Q water. DNA staining was performed by further incubating the cells at room tem-
perature with PBS containing 0.1 µM SYTOX Green Nucleic Acid Stain (Thermofisher
Scientific) for 20 minutes in darkness. The cells were finally rinsed with PBS and Milli-Q
water. Fixed samples were glued overnight to microscope slides (76 x 26 mm, Menzel-
Glaser) with aqueous mounting medium (Sigma Aldrich) at room temperature in dark-
ness. Samples were stored protected from light for up to two weeks at 4 ◦C.

5.4. EXPERIMENTAL RESULTS

5.4.1. PHOTOBLEACHING BEHAVIOR OF THE FLUOROPHORE

I N order to demonstrate the photobleaching behavior of the SYTOX stain in HEK 293T
cells sample, we have acquired photobleaching curves in widefield mode at different

illumination intensities. The number of acquisitions scaled inversely proportional to the
applied illumination intensity, so that each curve corresponded to an equal cumulative
illumination dose received by the sample. As can be seen from Fig.5.3, the photobleach-
ing rate of the SYTOX stain depends nonlinearly on the illumination intensity. However,
photobleaching curves corresponding to illumination intesities I < 10 W /cm2 largely
coincide with each other, which indicates that the photobleaching rate scales linearly
with the illumination intensity in this range.
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Figure 5.3: Photobleaching curves were acquired in a widefield mode at different illumination intensities on a
sample containing HEK 293T cells in which the DNA was labeled with SYTOX green nucleic acid stain. In the
region of illumination intensities 0−10 W /cm2 photobleaching rate depends linearly on the illumination in-
tensity. Additionally, a small self-quenching effect is observable at initial times due to the dense DNA labeling.
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We have performed standard non-adaptive multi-spot SIM using an average inten-
sity of approximately 0.08 W /cm2 per multi-spot pattern. The average intensity used in
adaptive SIM varies between 0.025−0.05 W /cm2. Hence, we have operated in the region
of linear photobleaching behavior of the fluorophore.

5.4.2. ILLUMINATION MASK EXAMPLES

For the generation of the grayscale masks we have employed the designs described in
section 5.2.1. Here we present three examples in the decreasing order of the illumination
dose that they impose on the sample. The linear mask shown in Fig.5.4(b) is calculated
using the intensity normalized widefield image and the boundary values of Imi n = 10%
and Imax = 85%. A lower illumination dose can be achieved with the same boundary
values if the linear grayscale mask calculation is based on a normalized widefield image
to which 15% percentile clipping is applied (Fig.5.4(c)). Finally, the nonlinear grayscale
mask shown in Fig.5.4(d) results in the most light saving regime. This mask is calcu-
lated according to the ∼ 1/I scheme, using an intensity normalized widefield image and
Imi n = 10% and Imax = 85% boundary values.

Performances of the three masks were compared in the time-lapse imaging. In stan-
dard SIM the integrated intensity of the image is decreased by 64% after 30 minutes of
time-lapse imaging. When adaptive SIM is used, the integrated intensity is decreased by
only 46%, 35% and 28% for the masks shown in Fig.5.4 (b-d) respectively. As expected,
a lower total illumination dose results in slower photobleaching of the sample. For our
further experiments we have used the linear mask shown in Fig.5.4(c) and the nonlinear
mask shown in Fig.5.4 (d).

5.4.3. IMAGE QUALITY IN ADAPTIVE SIM
In order to test the feasibility of the proposed method, we have compared adaptive SIM
images to standard SIM images acquired under equal imaging conditions. The linear
grayscale mask shown in Fig.5.4(c) was used as a weight for the multi-spot illumination
patterns.

The reconstructed adaptive SIM image bears a strong visual resemblance to the stan-
dard SIM image, as can be seen in Fig.5.5(a). This visual resemblance is confirmed nu-
merically by the structural similarity index ssi m [32]. The ssi m index between the stan-
dard and adaptive SIM equals 0.97, whereas the ssi m index between two repeated stan-
dard SIM images equals 0.99. A decrease of 0.02 in ssi m index roughly corresponds to
adding Gaussian noise with a standard deviation of 0.5% of the maximum pixel value to
the image.

The sum of all acquired images in the standard SIM dataset results in the widefield
image, which confirms the uniformity of the overall illumination; whereas the sum of all
acquired images in adaptive SIM dataset results in an image with a more uniform signal
level, revealing the non-uniform overall illumination in this case. Moreover, the sum
of all the acquired images is substantially less bright in adaptive SIM compared to the
standard SIM, which indicates the reduction in overall illumination intensity specific
to the adaptive SIM (see Fig.5.5(b)). Examples of standard and adaptive illumination
patterns are given in Fig.5.5(c) for comparison.
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Figure 5.4: Widefield image of HEK 293T cells in which DNA is labelled with SYTOX stain (a), and the resulting
grayscale masks (b-d), which can be used as a weight for the multi-spot illumination patterns.

5.4.4. PHOTOBLEACHING STUDIES

The reduction in photobleaching was quantitatively assessed in time-lapse experiments.
For each of the three imaging methods (standard SIM, adaptive SIM with linear mask
and adaptive SIM with nonlinear mask) five separate sample areas were imaged over 30
minutes. During this time 60 SIM acquisitions were taken, with each SIM acquisition
consisting out of 100 raw frames corresponding to the 100 multi-spot illumination pat-
terns. The integrated image intensity per SIM acquisition is decreasing with time due to
photobleaching of the fluorophores. The resulting photobleaching curves for the three
methods are shown in Fig.5.6 to demonstrate the improvement in photobleaching re-
duction achieved by applying adaptive grayscale illumination patterns. In standard SIM
the integrated image intensity is reduced by 35% after 20 acquisitions, whereas in adap-
tive SIM with the linear mask design it takes 60 acquisitions to induce the same bleach-
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Standard SIM Adaptive SIM

2μm

(a)
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(c)

Figure 5.5: Comparison of standard and adaptive SIM imaging modalities. (a) Visual similarity of the adaptive
and standard SIM images acquired under equal imaging conditions. (b) The sum of 100 raw images in standard
SIM results in a widefield image, whereas the sum of 100 raw images in adaptive SIM results in an image
with a more unified signal level. (c) Examples of the illumination patterns for the standard and adaptive SIM.
Illumination patterns for the adaptive SIM are produced by multiplying the standard SIM illumination patterns
with the mask shown in Fig.5.4 (c).

ing. Application of the nonlinear mask results in further improvements.

Examples of the reconstructed images for the three considered methods are given in
Fig.5.7. Time-lapse reconstructions for adaptive SIM show only small reduction in the
image brightness, unlike the reconstructions for standard SIM, in which the brightness
is progressively reduced during the 30 minutes imaging time. The SIM images were re-
constructed using 6 iterations of the piFP algorithm in the case of standard SIM and 40
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Figure 5.6: Comparison of photobleaching in standard and adaptive SIM. Each curve shows the average of 5
measurements on separate sample areas and the error bars indicate the standard deviations over 5 measure-
ments. Adaptive SIM enables at least three times longer imaging than the standard SIM.

iterations of the piFP algorithm in the case of adaptive SIM.

5.4.5. THE INFLUENCE OF OUT-OF-FOCUS LIGHT

The sample under study has a 3D structure, and the fluorophores located outside the
focal plane can be excited when the illumination pattern is projected onto the sample.
In order to investigate the impact of the photons emanating from the out-of-focus planes
on the measured photobleaching curves, we have applied pinholing to the acquired raw
image data. The pinholing is done by multiplying each of the raw frames of the SIM
acquisition with the corresponding illumination pattern, and leads to suppression of
out-of-focus light. The difference between the photobleaching curves obtained from the
original and the pinholed data is below 2% of the original integrated intensity. Therefore,
we conclude that the same reduction in photobleaching is achieved in and out of focus,
since cumulative light dose is equal in and out of focus and the bleaching rate scales
linearly with the illumination intensity for the used range of intensities.

5.5. CONCLUSION

W E have demonstrated the use of grayscale illumination patterns of the DMD for
lowering photobleaching in SIM. The overall illumination dose in SIM was reduced

by adapting the grayscale illumination patterns to the sample structure.

A reduced illumination dose inevitably leads to a reduced SNR in the acquired im-
ages. However, the final reconstructions in adaptive SIM do not display significant degra-
dation of the image quality compared to standard SIM. We have used the ssi m measure
in order to test their similarity. The degree of image deterioration in adaptive SIM is
equal to adding Gaussian noise with a standard deviation of 0.5% of the maximum pixel
value to the standard SIM reconstruction.
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Figure 5.7: Comparison of the photobleaching induced by 30 minutes of time-lapse imaging in standard and
adaptive SIM on HEK 293T cells, in which DNA is labelled with SYTOX stain. (a) First acquisition, (b) 20th

acquisition (10 min), (c) 40th acquisition (20 min), (d) 60th acquisition (30 min). Adaptive SIM leads to de-
celeration of the photobleaching, enabling longer observation time of the sample. Intensities are comparable
over all images.



5

90 REFERENCES

We considered two schemes for the generation of adaptive patterns: with a linear
and a non-linear dependence of the grayscale mask on the initial widefield intensity.
The performance of adaptive SIM with both schemes was compared to standard SIM in
time-lapse experiments on HEK 293T cells with SYTOX-stained DNA. The imaging time
in adaptive SIM can be at least three times longer than in standard SIM because of the
reduction in photobleaching. The nonlinear scheme for adaptive patterns generation
provides a slightly bigger improvement than the linear scheme.

The degree of improvement achieved by adaptive SIM strongly depends on the sam-
ple structure and the fluorophore that is used. Adaptive SIM is expected to provide
even bigger photobleaching reduction when applied in 3D imaging due to the generally
higher sparsity of the sample in 3D than in 2D.

Moreover, the types of masks that are used to create adaptive illumination patterns
may vary for different sample types. In order to support adaptive SIM imaging for a
broad spectrum of sample types, various strategies for generation of the adaptive pat-
terns have to be developed. For example, a mask based on a variance filter can be used
to image samples with multiple nearly uniform objects or to study processes occurring
at the border of such objects.

Finally, one of the potential pitfalls of adaptive SIM is non-uniform bleaching of the
sample. Since the overall illumination in adaptive SIM is not uniform, the areas of the
sample that receive a higher intensity will bleach faster than the other areas. Hence,
adaptive SIM has to be applied cautiously in applications where precise quantitative
analysis of the images is required.
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[18] P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope
with a programmable illumination array,” Opt. Express 20, 24585–24599 (2012).

[19] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan,
Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution
and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

[20] R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. F. Van Noor-
den, and E. M. M. Manders, “Controlled light-exposure microscopy reduces photo-
bleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25,
249–253 (2007).

[21] R. A. Hoebe, H. T. M. Van der Voort, J. Stap, C. J. F. Van Noorden, and E. M. M.
Manders, “Quantitative determination of the reduction of phototoxicity and pho-
tobleaching by controlled light exposure microscopy,” J. Microsc. 231, 9–20 (2008).

[22] W. Caarls, B. Rieger, A. H. B. De Vries, D. J. Arndt-Jovin, and T. M. Jovin, “Minimizing
light exposure with the programmable array microscope,” J. Microsc. 241, 101–110
(2011).

[23] P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. v. Vliet, and T. M. Jovin, “Theory of
confocal fluorescence imaging in the programmable array microscope ( PAM ),” J.
Microsc. 189, 192–198 (1998).

[24] Q. S. Hanley, P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “An optical sectioning
programmable array microscope implemented with a digital micromirror device,”
J. Microsc. 196, 317–331 (1999).

[25] K. K. Chu, D. Lim, and J. Mertz, “Enhanced weak-signal sensitivity in two-photon
microscopy by adaptive illumination,” Opt. Lett. 32, 2846–2848 (2007).

[26] T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field
optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19,
5644–5657 (2011).

[27] N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, “Studying different illu-
mination patterns for resolution improvement in fluorescence microscopy,” Opt.
Express 23, 31367–31383 (2015).

[28] L. Song, E. J. Hennik, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluo-
rescein in quantitative fluorescence microscopy,” Biophys. J. 66, 2588–2600 (1995).

[29] N. Chakrova, B. Rieger, and S. Stallinga, “Deconvolution methods for structured
illumination microscopy,” J. Opt. Soc. Am. A 33, 12–20 (2016).

[30] N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluores-
cence microscope,” Proc. SPIE 9330, 933008 (2015).

[31] J. M. Zwier, G. J. Van Rooij, J. W. Hofstraat, and G. J. Brakenhoff, “Image calibration
in fluorescence microscopy,” J. Microsc. 216, 15–24 (2004).



REFERENCES

5

93

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error visibility to structural similarity,” IEEE Trans. Sig. Process. 13, 600–612
(2004).





6
CONCLUSION

95



6

96 6. CONCLUSION

6.1. RESULTS
A demand for high resolution visualization tools in cell biology serves as a powerful in-
centive for fluorescence microscopy development. This ongoing development resulted
in a number of super-resolution techniques, including SIM, that have matured and have
been brought to the market. In this work we have considered an alternative SIM configu-
ration, with DMD-based hardware and deconvolution-based image reconstruction. We
have developed an optical design of a DMD-based microscope, taking into account the
diffraction effects of the DMD. The optical quality of our microscope was estimated by
the modulation transfer function obtained from an edge profile measurement (Chapter
2). The advantage of the DMD-based SIM is great flexibility in the choice of operational
mode, which enabled us to examine different illumination patterns and reduce photo-
bleaching. A detailed summary of the results of these studies and the comparison of the
different reconstruction algorithms in SIM is given below.

6.1.1. OPTICAL SECTIONING IN A DMD-BASED SIM MICROSCOPE
Optically sectioned images can be obtained in SIM by using multi-spot illumination pat-
terns and subsequent digital pinholing. We have experimentally proven that the sec-
tioning capability, measured by the signal-to-background ratio, improves with increas-
ing pitch and decreasing size of the digital pinhole (Chapter 2). However, the number
of required raw images scales quadratically with the pitch. Therefore, the pitch has to
be chosen large enough to avoid crosstalk between the pinholes, and, at the same time,
sufficiently small to maintain reasonable temporal resolution of the microscope. Similar
to standard confocal microscopy, the size of the pinhole establishes a user-defined com-
promise between the sectioning strength and the signal level in the image. As a rule of
thumb, the size of the digital pinhole can be set to the diameter of the first dark ring of
the Airy pattern.

6.1.2. RESOLUTION-DOUBLING IN A DMD-BASED SIM MICROSCOPE
When performing SIM with a DMD-based microscope one has to choose between var-
ious illumination and reconstruction options. In this thesis we have compared several
illumination types (Chapter 3) and several reconstruction algorithms (Chapter 4).

The illumination patterns can be roughly divided into two groups – periodic and ran-
dom. The quality of the image in case of periodic patterns depends on the pitch of the
patterns, whereas in case of randomized patterns it depends on the sparsity and the
number of pseudo-random patterns. Our simulations, for which only Poisson noise is
taken into account, predict that dense pseudo-random patterns (with fill factor > 20%)
result in higher noise amplification and lower resolution than sparse patterns. In prac-
tice, however, sparse pseudo-random patterns exhibit additional spiky noise, presum-
ably due to insufficient averaging of the background intensity. As a consequence, both
sparse and dense pseudo-random patterns result in much noisier images than periodic
patterns. From this we conclude that SIM with speckle illumination is inferior to the
standard stripe-based or multi-spot SIM in terms of image quality. This means that
illumination patterns with strong peaks at high spatial frequencies (periodic patterns)
provide better OTF support in the reconstructed images than illumination patterns with
continuous decreasing frequency spectrum (pseudo-random patterns). Thus, in DMD-
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based SIM pseudo-random patterns, which imitate speckle illumination, do not offer
advantages over periodic illumination pattern types. However, speckle-based SIM im-
plemented with a diffuser was originally intended to provide a SIM imaging solution
with low cost and low hardware complexity. In this respect, SIM with speckle illumina-
tion can still prove to be useful.

The reconstruction algorithms can be split into two groups. The first group of algo-
rithms only deals with illumination patterns that can be represented as a sum of discrete
components in the Fourier domain. The final image can then be reconstructed by sep-
arating the components, placing them at their original positions in Fourier space and
recombining them again. These methods cannot be used when the Fourier transform of
the illumination pattern has a fairly large number of discrete components, which makes
their separation practically difficult. The second group of methods treats the reconstruc-
tion problem in SIM as an inverse problem and seeks a solution by employing a noise
model and carrying out the MLE of the corresponding likelihood function. These meth-
ods can process images acquired under any type of illumination, and due to this prop-
erty were used in this thesis. Many different algorithms belong to this group, but, in fact,
all of them can be derived using a common strategy. We devised a generalization of dif-
ferent MLE methods applied to SIM (Chapter 4.2). By choosing different noise models,
update steps and regularization functions, this general formulation can be transformed
into various reconstruction algorithms known from the literature, notably the piFP and
the jRL algorithms. The choice of a specific algorithm depends on the parameters of the
problem and available prior knowledge about the sample.

One of the most basic reconstruction algorithms is based on the steepest descent
optimization of a quadratic error function and can be derived from the general MLE for-
mulation using the Gaussian noise model and a constant update step (Chapter 4.2.2). We
have shown that the piFP algorithm is identical to the steepest descent of the quadratic
likelihood function with the only difference being the order of the applied object update
(Chapter 3.2). In the steepest descent method, the sought-for object is updated once for
all the raw acquisitions, while in the piFP algorithm the object is updated sequentially
for each acquisition. This sequential update leads to faster convergence of the piFP al-
gorithm. In a series of experiments, conducted on fluorescent beads and fixed cells, we
have demonstrated that the piFP algorithm is a fast and computationally undemand-
ing way to solve the reconstruction problem in SIM. In order to further speed up the
convergence of the piFP algorithm we suggested to use Newton-Raphson (NR) update
coefficients. Both simulations and experiments show a faster convergence when the NR
update step is used. However, the piFP algorithm with NR update step is less stable and
might lead to diverging solutions. The piFP algorithm with NR update coefficients can
be recommended when a large number of raw images is used, for example, in speckle-
based SIM.

Another algorithm, jRL, can be derived from the general MLE formulation by using
the Poisson noise model and the Richardson-Lucy update step (Chapter 4.2.3). We have
compared the performance of the jRL and piFP algorithms in simulations and experi-
ments in terms of resolution improvement, reconstruction artefacts, and convergence
speed. By analyzing the change in MTF curves as a function of the number of iterations
in the piFP and jRL algorithms we drew the following conclusions. The resolution im-
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provement for the piFP algorithm is uniform for different types of objects, whereas the
resolution improvement for the jRL algorithm is object-dependent, with isolated objects,
such as points or well separated thin lines, being better resolved than dense or periodic
objects. Moreover, in the jRL reconstruction of well separated objects we have observed
the interesting phenomenon of resolution improvement above the SIM frequency cut-
off. Such an improvement is possible thanks to the a priori available information that
the object is sparse. As a result, periodic or dense objects are better resolved in the piFP
reconstruction, while point-like objects and thin lines are better resolved in the jRL re-
construction. One can benefit from both methods by combining them, for example by
using an outcome of several piFP iterations as an initial estimate for the jRL algorithm.

We have demonstrated that analysis of the MTF curves is a useful approach that can
serve not only to indicate the resolving capabilities of a particular algorithm, but also
to interpret the potential causes of reconstruction artefacts. For example, the ringing
artefacts, inherent to both methods, appear to be correlated to the sharp cutoff of the
corresponding MTF curves.

In terms of convergence speed the piFP algorithm is 5-10 times faster than the jRL (it
typically takes 0.1-1 min (3-20 iterations) for the piFP, and 6-10 min (100-150 iterations)
for the jRL algorithm to converge). For the reconstruction of one 2D section this differ-
ence does not play a big role. However, in time lapse and/or 3D SIM imaging the speed
of convergence becomes an important factor.

6.1.3. ADAPTIVE SIM
One of the main advantages of the SIM setup with an integrated DMD is the possibility to
locally adjust the illumination light dose. For example, the illumination intensity can be
adapted according to the brightness of the observed sample. Although the idea of such
an adaptive illumination is not new and has been demonstrated in confocal and PAM
microscopes, to our knowledge, it has not been applied to SIM before. In this work we
have implemented adaptive illumination in multi-spot SIM (Chapter 5). With the help of
adaptive illumination we have reduced the overall illumination light dose and, thereby,
achieved photobleaching reduction. This has been quantified in time-lapse experiments
performed on fixed cells by monitoring the decay of the integrated image intensity over
time. For the sample under study, the observation time is increased at least three times
in adaptive SIM compared to non-adaptive SIM. Furthermore, with the help of the struc-
tural similarity index we have verified that there is no significant degradation of the im-
age quality in adaptive SIM compared to the non-adaptive case, although adaptive SIM
images do have a lower SNR.
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6.2. DISCUSSION AND OUTLOOK

6.2.1. FUTURE SIM
The performance of a DMD-based SIM microscope in optical sectioning or resolution-
doubling imaging modes is similar to the performance of commercially available SIM
and confocal microscopes. However, the fact that all these imaging modes can be com-
bined within one optical instrument has potential economic value. It is possible that the
next generation of SIM microscopes will indeed be equipped with a DMD rather than
diffraction gratings. An advantage of the versatile DMD-based setup is that it can ac-
commodate different objectives with minimum changes to the optical path. For exam-
ple, in high throughput applications it can be interesting to use a lower-NA air objective
in SIM mode in order to obtain a resolution on par with an oil immersion objective,
while maintaining a large field of view (FOV) and the possibility of imaging large areas
by scanning or patching multiple FOVs together. In a classical SIM setup, using lower-
NA objectives would require an additional diffraction grating, while in a DMD-based
setup the problem can be solved by simply changing the pitch of the projected illumina-
tion patterns. Apart from its flexibility, a DMD-based microscope offers the possibility
of adaptive SIM imaging. Since photobleaching and phototoxicity are the main factors
hampering long-time live cell imaging, the ability to reduce the illumination intensity
without introducing significant image deterioration gives a DMD-based SIM configura-
tion another serious advantage.

It is important to note, however, that line illumination patterns produced by the
DMD and projected onto the sample via a microscope objective have lower modulation
depth than similar sinusoidal patterns produced by two or three interfering beams from
a diffraction grating. Decreased modulation depth of the illumination pattern leads to
the degraded SNR of the images. As a result, SIM images acquired using sinusoidal pat-
terns will have lower quality in a DMD-based setup compared to the standard SIM setup
with an integrated diffraction grating. For this reason multi-spot patterns are preferred
in DMD-based SIM setups. However, the number of required raw frames in multi-spot
SIM is on the order of 100 and in SIM with sinusoidal illumination patterns it is only 9-
25 frames per section (depending on the number of orientations and translations of the
sinusoidal illumination pattern). Therefore, the temporal resolution of multi-spot SIM
is inferior to that of standard SIM. Another way to solve the modulation depth problem
in DMD-based SIM is to introduce an additional spatial frequency filtering step in order
to filter out the dc-component of the diffracted field. This step, however, will complicate
and possibly disable the adaptive SIM imaging mode.

Additionally, in a DMD-based SIM microscope the incidence angle of the illumina-
tion beam has to be adjusted in order to match roughly the blazed grating condition for
the used wavelength. This issue is not prohibitive for multi-color SIM, but it has to be
taken into account in the experimental setup. In a classical SIM setup the change of the
illumination wavelength is not associated with any changes in the optical path.
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6.2.2. DEVELOPMENTS IN DECONVOLUTION

In this thesis we restricted our consideration on MLE methods for image reconstruction
in SIM to non-regularized problems. However, in the majority of cases some information
about the imaged structure, such as positivity or sparsity, is available in advance. This
information can be used in the form of a regularization function in order to enhance the
resolution and reduce or equalize the noise amplification in the reconstructed images.

Furthermore, sparsity of the images can be exploited in a different imaging method
using the compressive sensing (CS) framework. According to the theory of CS, it is pos-
sible to reconstruct sparse signals from measurements with less sampling points than
dictated by the classical Nyquist-Shannon theorem [1]. Current implementations of
the CS principle in fluorescence microscopy are based on DMD-modulated illumina-
tion and single-pixel detection [2, 3]. In these implementations the use of expensive
scientific cameras is avoided, however, this feature comes at the cost of increased image
acquisition times. Since fast imaging is a highly desirable feature in live-cell fluores-
cence microscopy, we anticipate that further developments in the field of compressive
microscopy will target image acquisition speed and the related illumination dose.

6.2.3. COMPARISON TO SELECTIVE PLANE ILLUMINATION MICROSCOPY

Since SIM is well-suited for live-cell imaging at high resolution, it is useful to compare it
to another fluorescence microscopy technique designed for imaging living specimens –
the selective plane illumination microscopy (SPIM). In SPIM, a thin plane illumination
and widefield detection are used to achieve optical sectioning [4]. The lateral resolution
in SPIM is equal to the resolution of a standard widefield microscope, and the axial reso-
lution depends of the thickness of the illumination plane, which is typically 1-4 µm thick
(the thickness is defined by the NA of the illumination objective, which cannot be high
due to the required working distance). However, in cases when the sample can be ro-
tated and observed under different angles, the tomographic reconstruction of the SPIM
data provides an almost isotropic overall resolution [5, 6].

SPIM has a number of very strong characteristics. First of all, since the illumination
volume in SPIM is reduced to one plane at a time, a great reduction in photobleach-
ing can be achieved (SPIM uses 1-3 orders of magnitude lower light dose than confocal
microscopy [7]). Next, since the whole plane is illuminated simultaneously, SPIM has a
high temporal resolution (image acquisition speed in SPIM is 10 to 1000 frames per sec-
ond [7], which is 10 to 1000 times faster than in SIM). Moreover, in SPIM it is possible to
observe 3D specimens with a thickness of several millimeters. These beneficial features
for imaging living samples come at the expense of a rather poor spatial resolution. In ap-
plications where spatial resolution can be sacrificed for better temporal resolution and
lower photobleaching, SPIM is preferred to SIM. Therefore, SPIM is mostly used to study
large living specimens, for example, in developmental biology. However, the combina-
tion of SIM with SPIM may expand the scope of its use to single cell imaging [8–10].

6.2.4. IMAGE QUALITY ASSESSMENT

An unresolved issue in fluorescence microscopy in general and in SIM microscopy in
particular is the assessment of image quality. Interpretation of the images is a complex
matter and often turns out to be very subjective. Since a universal procedure to judge
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the resolution and the overall quality of the final image does not exist, in an attempt
to provide verifiable image comparison microscopists judge the image quality based on
several separate parameters, such as SNR, PSF, presence and severity of artefacts, etc.
A parameter which is commonly used to represent the resolution in fluorescence mi-
croscopy is the FWHM of the PSF. The FWHM is often obtained from point-like objects,
such as fluorescent beads with sub-diffraction size [11]. As has been shown in this the-
sis (Chapter 4), some reconstruction methods provide object-dependent resolution im-
provement. Therefore, super-resolution methods which involve a deconvolution step
often perform significantly better on particular structure types, such as isolated points
or thin filaments. Using one FWHM criterion to judge the overall resolution that the
method provides can be unfair and even misleading in this case.

In order to improve the situation, a considerable effort should be put in develop-
ing universal criteria that are truly representative of the image quality. Promising devel-
opments in this direction are the resolution measures which are based on the Fourier
Ring Correlation (FRC) [12, 13] and the spectral signal-to-noise ratio [14]. The FRC res-
olution concept, which was first used in the field of cryo-electron microscopy, implies
measurement of the correlation between the Fourier Transforms of independent noise
realizations of the same object. This measure was recently successfully implemented
for resolution assessment in localization microscopy [15], and may be extended to other
super-resolution methods. In the case of SIM, the FRC resolution can be computed from
two images of the same sample area with different noise characteristics.

Additionally, we expect that fluorescent resolution targets with sufficiently fine struc-
tures will become commonplace to accommodate standardized image quality measure-
ments in the near future [16].

6.2.5. SUGGESTIONS FOR FOLLOW-UP RESEARCH IN ADAPTIVE SIM
Adaptive SIM is a very promising emerging method. The photobleaching reduction ef-
fect in adaptive SIM strongly depends on three factors: sample structure, fluorophore in
use, and the implementation of the adaptivity of the illumination patterns. In this thesis
we have demonstrated adaptive SIM on fixed HEK293T cells in which DNA was labeled
with SYTOX stain, and considered two different implementations of adaptivity. Although
the first results are very positive, a thorough follow-up study is required in order for adap-
tive SIM to become a reliable technique for photobleaching and phototoxicity reduction.
To that end the following studies can be recommended:

1. The design of adaptive illumination patterns has to be tailored to the sample type
(such as filamentous, dotted, dense, etc.). Therefore, different strategies for the
generation of adaptive illumination patterns have to be developed in order to cre-
ate a bank of possible adaptive illumination designs for different sample types.

2. Since a significant spread in the efficiency of the method is expected for differ-
ent samples, it is useful to quantify the photobleaching reduction for the different
sample types and commonly used fluorophores.

3. A comprehensive comparison of the image quality in adaptive SIM and non-adaptive
SIM should be done.
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4. Adaptive SIM should be extended to 3D imaging, as it is expected to provide an
even bigger gain in this modality.

5. Since the overall illumination in adaptive SIM is not uniform, some areas of the
sample receive higher light dose and, therefore, bleach faster than other areas of
the sample. If the information about the photobleaching dynamics of the fluo-
rophore is available, a correction for non-uniform photobleaching can be imple-
mented in the adaptive SIM image reconstruction.

6. An important parameter in live-cell SIM imaging is the temporal resolution, since
insufficiently fast imaging can lead to motion artefacts in the reconstructed im-
ages or simply fail to capture the fast biological processes. The sinusoidal illumi-
nation patterns offer better temporal resolution than the multi-spot illumination
patterns, therefore, implementing adaptive SIM with sinusoidal illumination pat-
terns would be extremely useful in the view of live-cell imaging. However, it is not
clear if such an implementation is possible, and if so, how complex the required
setup would have to be.
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