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Fluorescence Epi-Illumination

CCD Spectral Sensitivities
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Confocal microscopy of thick 3D-samples

Acquisition of Optical Sections
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e Scanning microscope with
small pinhole on detection side

e Removes hazy background
from out-of-focus layers
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Widefield & confocal fluorescence

MICroscopy
Widefield: Confocal:
e has uniform illumination e has single spot illumination
e Uses an image sensor for e uses a scanner for sequential
parallel imaging imaging
e is fast e is slow
e has poor optical sectioning e has good optical sectioning
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Microlens l
Array

e
Pinhole
Array

» Drawbacks:
* light efficiency
» complex equipment

Multi-spot scanning microscopy

« Array of spots for video-rate imaging with good optical sectioning

Yokogawa Spinning Disk Unit Optical Configuration

Shaped and Collimated —
Laser lllumination Monochrome

Microlens CCD Camera

Dichromatic  Lens
Beamsplitter
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The diftfraction limit.

Ernst Abbe
(1840-1905)
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Optical image of a point object with a lens

A geometrical image point
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e Rays converging to image point/focus correspond to plane waves
propagating at angles 0 < ¢

e Total field is the sum of all these plane waves

e Total intensity depends on constructive/destructive interference
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Interference gives a spot

e all waves in phase at the image point
-> constructive interference/max. intensity

e away from the image point: intensity

waves no longer in phase

-> destructive interference builds up r
-> intensity decreases
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What is the width of the spot?

e Total intensity near zero if waves at largest angles +¢¢ have destructive

interference:
x :
\ /,\path length difference = r SIN X
3 r. e total path length difference between | | and

at point gy must then be:

____________________________

2rsina = —
2

e size of spot at image point:

A
y=—
4sin
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Airy-distribution

e Exact expression for intensity (Point Spread
Function) :

2J, (27 NA r//l)}z

2 :]"[ 27 NAr |2

e with J,(X) a so-called Bessel-function
and the Numerical Aperture is defined by:

NA=sino
» Width Ar=0.612 L:
= distance peak to first dark ring: NA
Rayleigh
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Point Spread Function and Optical
Transfer Function

PSF OTF

OTF is the Fourier Transform of the PSF
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Diffraction limit to resolution

... determined by Abbe or Rayleigh-criterion:

" Optical Transfer
Function

Airy Disk Separation and the Rayleigh Criterion

Ai
Disks Resolved Rayleigh Not
Lim Resolved

500nm

d =0.50 =250nm
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Light microscopy
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... to optical nanoscopy!
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Zoom in & enhance:
Unravel the subcelluar
machineary of life
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Optical microscopy

Surface methods Three-dimensioh@oadization Microscopy

/\ Conventional

NSOM TIRF

Non-linear
Interference
Multiphoton Reversible saturation SAM

A

SHG CARS  2P3P i e STORM

ApoTome

e PALMIRA
MMM — 4Pi

SSIM STED

Current Opinion in Biotechnology

ching
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Garini, Vermolen & Young, From micro to nano: recent advances in high-resolution
microscopy, Current Opinion in Biotechnology, 16, 2005



Super-resolution techniques

» Near-field, surface enhanced

e Far-field
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Far-field super-resolution
techniques

e Structured Illumintation:
 Resolution improvement ~2x
 Optical sectioning, 3D possibility
* Live cell

 Fluorescence switching
 Resolution improvement ~10x
« Sometimes optical sectioning, 3D possibility
« Live cell not straight forward
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Illumination patterns for resolution
Increase

PSF single
emitter:

PSF's two
emitters that —
are close by:

Resulting
image with —
overlap:

How should the illumination change to make only one emitter visible?
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Structured Illumination Microscopy (SIM)

PSF's two emitters
that are close by

Illumination
pattern:

Resulting
images without —>

overlap:

Periodic illumination pattern (stripes)

Make multiple images with shifted pattern

Use computer to construct final image
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Proof of enhanced resolution of SIM images

Widefield

sources: Gustafsson, J. Micr. 2000, Frohn et al. PNAS 2000
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Moiré-effect

e Overlay of periodic patterns gives image with larger
period

e (Can be used to “"magnify” small structures

e = "Structured Illumination Microscopy”

L
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Examples Moiré-effect 1




Practical's on Structured
[Ilumination

» Offers 2x increased resolution with good signal transfer of all
spatial frequencies.

» To make it work, there are many practical problems:
* projected grid positions must be known exactly on the sample
« several grid positions must be acquired

« the digital reconstruction adds "“structured noise”

» “Blind” structured illumination
» uses many (~100) unknown patterns generated by e.g. speckles
for illumination.
* reconstruction must compute sample & illumination

]
TUDelft



Contfocal 2.0
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« C.J.R. Sheppard. Super-resolution in confocal microscopy. Optik, 1988

« C.B. Muller and J. Enderlein. Image scanning microscopy. Physical Review Letters, 2010.

* De Luca et al.. Re-scan confocal microscopy: scanning twice for better resolution. Biomedical
Optical Express, 2013.

+ 3. Roth et al. Optical photon reassignment microscopy (OPRA). Optical nanoscopy, 2013.

* York et al. Instant super-resolution imaging in live cells and embryos via analog image processing.
Nature Methods, 2013.
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Contfocal 2.0
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Contfocal 2.0

e Offers increased resolution

» Theoretical 2x better, but limited by strong decay of the OTF
practically only 1.4x better.

 Very easy to retro-fit on existing confocal microscopes.
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STimulated Emission Depletion

| _ Konfokal
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Stimulated emission

Incident photon “knocks out” molecule in excited state
Emitted photon identical to incident photon
(energy, direction of propagation, polarization)

fully reflective mirror lastrlg medium partly reflective mirror
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How does this relate to @ LASER? =z cocsiomn st e
(Light Amplification by Stimulated Emission of Radiation)
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Application of stimulated emission in STED

Excite fluorophores with first spot

Illuminate with second ring-shaped spot
Deplete excited state via stimulated emission
Collect fluorescent light from central “spike”

Vol 4
excitation Stefan Hell

spot,
diffraction .
limited T
- > W
depletion spot Narrow
with hole / “spot”
“doughnuts” excited state in outer

regions depleted
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STED-setup

EXC spot STED spot

Lens

3 +

Detector

EXC STED y

beam bean
%z
phase

modulation Piezo
Stage

Effectivé fluor. spot (PSF)

{1.0
66nm
0.5

0.0

200 0 200 200 0 200
[nm]

« STED-beam must have bit larger wavelength (Stokes-shift)
« STED-spot must be engineered to “doughnut”-beam/ring-shaped spot
« Needs high powers to fully deplete excited state

source: http://www.mpg.de/english/illustrationsDocumentation/documentation/pressReleases/2006/pressRelease20060412/index.html

]
TUDelft



What are typical powers needed?

Probability that photon de-excites fluorophore by stimulated
emission must be very close to one

#photon-hits = intensity X cross-section X excited state lifetime

low power: high power:
broad “spike” narrow “spike”

Power must satlsfy

Example (hv=2 eV, A/NA=0.5 pm,
0=1020 m?, t=10" sec)

Laser powers of several Watt needed!!!
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Resolution of STED

Increase in depletion beam power (a) confocal STED
=> parrower emission spike
=> better resolution

o (b) 235nm 36
Modified Abbe-formula: ” L
E‘ 200 ; am 0 45 7\’STED c 24
£ ' nsinoc,/1+gB 12

ﬂ % 372nm 0 & 30

d= E 150 -40nm » l
. nm 26
2nsin a1+ 1/ 1y, & i 3 M

0 200 400 600 800 1000
STED Intensity [MW/cm?]

V. Westphal, S.W. Hell (2005), Phys. Rev. Lett. 94, 143903.
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STED

Idea:

« "Switch-off” the emitters in the PSF
expect at the very center.

» Switching mechanism: Prevent the
emitters from emitting.

Idea is around since 1990s, took a
long time to make it work

See literature list for more

Grotjohan et al., Nature 2011

Binary code
100100111011011100}

Mean counts
2

o

Figure 2 | Rewritable data storage. The text of 25 Grimm's fairy stories
(ASCII code; 1.9 Mbits) consecutively written and read ona 17 X 17 pmarea of
a PAA layer containing rsEGFP, with bits written as spots (representative
frames shown). The white dots mark spots that were recognized as set bits (‘1's).
The graph shows an intensity profile along the indicated area, averaged over
three pixels along the y-axis. The blue line indicates the threshold used to assign
read spots to ‘0's or ‘I's.
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"PALM" and "STORM"

- 200 nm

500 nm

M 5zymborska 201!
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Single molecule localization microscopy

>
Fit center
positions B, &

Time

-

\4

Place “blob” on all measured
positions to get the final image
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Single emitter localization

Switch fluorophores “on” or “off” in time

/ﬂuorophore #1 “onx mluorophore #2 “onx

| A 4
f A\ ' / \
/ \ / [ \
"’ ‘\ A“ \ \ .".
/ \\ ’ "

J\ J\

t

N 2

Good ides iff: Position of single emitter can be
determined with high certainty
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Mechanisms for “on” / “off” switching

PALM = Photo-Activation Localization Microscopy

Betzig/ H.Hess, Science 2006

S. Hess, Biophysical Journal 2006
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PALM workflow
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Mechanisms for “on” / “off” switching

STORM = STochastical Optical Reconstruction Microscopy
(Zhuang, Nat. Methods 2006)
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Mechanisms for “on” / “off” switching

GSDIM = Ground State Depletion followed by single molecule IMaging (Hell, PRL 2007)

(a) Depletion Power P, [pW]

- 0 20 40 60 80 100
-E:(.'é 1.0' S1 e

% 0.8‘ |EXC Fllr T,
=~ 0-6‘ IT

8 ] So

c 0.4

S 0.2 1 ]
Qo {

s 0.0 ,i v —
E 0 100 200 300

Depletion Intensity /, [kW/cm?]
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Mechanisms for “on” / “off” switching

dSTORM = "direct" STORM (Heilemann, Angew. Chem. 2008)

any fluorophore

e~ ®---- @
0,

/\ 0O,

reduction fluorescence oxidation
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Why is a single emitter better than
many?

» Single emitters’ positions are estimated with nanometer precision

*
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A real acquisition on a microscope
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Pointillism in art

Paul Signac (1863-1935)
“"Windmills at Overschie”

TU De Ift source: http://www.brown.edu/Courses/CG11/2007/Kelly_Robinson/pointillism.htm



Dithering for paper printing

%
TUDelft http://en.wikipedia.org/wiki/Dither



World press photo 2012
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Resolution improvement 10-fold

Conventional Super-resolution

[
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S TORM

'i"U Delft Bates et al., Science 317, 2007



Nanoscopy with more
than 100,000 ‘doughnuts’

b

RESOLFT
=REversible Saturable
Optical Fluoresece
Transitions

= nonlinear structured
illumintation

]
TUDelft

RESOLFT: on-state reglons



Super-resolution ~10-20 nm
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K.Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic
cytoskeletal structure in axons, Science 339: 452, 2013.
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Widefield image

Data acquisition
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Segmentation

Series of Uniform
Filter operation

<

Local maximum

]
TUDelft




3
TUD:¢

correlation

Quantification

clustering

,

Super-resolution
Visualization

Processing pipeline

drift

Data acquisition

Post-processing

Localization

filter
— keep

frequency

position

combined .
localizations -

photon count

——




Localization uncertainty

o

Localization can be sub-pixel accurate
Small spot size helps

... But not too small compared to pixel size Noise

Low noise level is also beneficial l

&

Size of Airy-spot —

%

BZ

()
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Localization uncertainty: rule-of-thumb

» Position estimate by each photon with standard deviation:

 Independent estimates for N, photons
» The overall standard deviation is then:
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Imaging Model

2D finite pixel Gaussian PSF

1 —('1—01)2—('14—0;1')2

202
5 € 7

PSF(z,y) =

ZTo

pr(z,y) = 0, / PSF (u, v)dudv +
Aj

(T, y) = E'.Ic] AE, (:Ev y)&Ey(;r, y) + Hbﬂ

Ignore:
vectorial effect, aberrations
dipole orientation, readout noise

Gaussian is OK for free
rotating emitter

Parameters:

q,. X-position

q,: y-position

a,: emission rate

Q- background
count rate

q,. spot width

U_Kk: expected
count in pixel k
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Probability and likelihood

Probability of observing pixel values {n.k = 1,...,N,,} given average
rate {p|k = 1,...,N,; } is given by Poisson law:

The reverse is also true: Likelihood that {p,|k = 1,...,,N ,} corresponds
to ground truth given the observed pixel values {n,|k = 1,...,N,} is:
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MLE optimization problem statement

The unknown parameters are found for the maximum in the likelihood
L({MJ{n}) as a function of the unknown parameters (q,,9,,95,9,) =
(XOIYOIOIN)'

Maximum of L({p, }|{n,}) = maximum of log-likelihood:

Then we must solve:
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Finding the optimum
Using that:

we find:
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Localization uncertainty

2nd derivative at optimum is measure for uncertainty:

This gives an uncertainty in emitter location:
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Likelihood and CRIB

Ike—le(Iey)

' Poisson process
T

L(f|9) _ H :u'k(:l?s y)
k

Cramer-Rao lower bound & Fisher information matrix

var(0) > I1(9)~1 o Oln(L(Z|0)) 0In(L(Z|A))
()= 1(6) I”(g)_E[ a0, 00

J

1 O (xz,y) Oz,
1:;(0) _Z iz, y) Opg (2, y)

—u(wy) 00, 00,

:> Use CRIb to estimate localization uncertainty

(CRLB: Minimum variance of an estimated parameter)

[y~
UV
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Parallel processing on Graphics
Card

Package all sub-regions together  (~10° sub regions)

\ 4

fixed number of iterations
fits GPU’s single instruction
multiple data strategy (SIMD)

Device Memory

BE0 0

>100 processors on one GPU,

price 100-1000€ fill shared memory in each Block (Multi-Processor)
|
Slze Of SUb-reglonS flxed On Multi-Processor (Block) Multi-Processor (Block) Multi-Processor (Block)
ZOPSF +1 pixel one thread one thread one thread

(processor) (processor) (processor)
processes processes processes

one image one image one image

. SharedMemory ||| L__Shared Memory |

\...Shared Memory |
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Performance on Simulations

. Maximum Likelihood Estimation Least Squares Minimization Thompson vs CRLB
10 . . . . . .
r_"'l .
L oo ] i
By
0 ]
[
\Eéa

)
b
b= -1
E 10
E‘H

—ﬁx theo. CRLB

— — —a, Thompson Eq.14

it e
“ % 0 without analytic Jacobian g
L[ Ox®stCRLE O with analytic Jacobian % ¥
10 : : : : i :
10' 10° 10° 10" 1w0° 10° 10' 10° 10° 10°

Intensity (total photons)

((ax*)) = Opse +ps” /12, 4ro,.0,  Too optimistic for low counts
N psN? and any background signal

'?U Delft RE Thompson, DR Larson & WW Webb, Biophysical Journal 82, 2002
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Post-processing of localizations (1)

» Filter the localizations based on the fitted parameters
e.g. photon count, precision, width of the PSF

5000 . . : C 600 - : : - 600

500 - 500 -

4000 |-
400 - 400 |-
3000 |-

300 |- 300 -

2000 |-

200 |- 200 -

1000 |-

100 |- 100 |-

0 - 0 :
0 50 100 150 200 0 50 100 150 100 200 300 400 500

Photons / fit Localization precision (nm) Fitted PSF FHWM (nm)
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* “Frame connection”: Combining
spatially close localization from
consecutive frames.

 Higher photon count for the
individual emitter leads to higher
effective localization precision.

» Danger of merging two different
emitters into one effective
localization.

position

Post-processing of localizations (2)

faem)

s
L=

combined ceseses

localizations
t
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Post-processing of localizations (3)

e Drift correction

» Imaging times are typically 5-30 minutes! Drift on the order
of the localization precision ~ 10 nm must be avoided!

» 1) Use reference beads for tracking
» 2) Use localizations for cross-correlation based drift correction

» M.J. Mlodzianoski et al. Sample drift correction in 3d fluorescence
photoactivation localization microscopy. Optics Express, 19(16):
15009-15019, 2011.

» C. Geisler et al., Drift estimation for single marker switching based
imaging schemes. Optics Express, 20(7):7274-7289, 2012.
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Resolution in localization
miCroscopy
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Resolution criteria in super-resolution

Currently used measures for localization microscopy

» Nyquist sampling density: 2/+/p
* Localization precision: o

Localization precision constant Labelling constant

.x . .o. ”» » -
. * s * . . .‘ - . - a0
> T ™ j.v LR R ,.,-f
i %D x‘. _— * . . »
SRS b a e ey
. » A » » » o . s .o. .o
Increasing . " .’..'.~ , STy, r

labelling . | e e "

_>
Increasing localization precision
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Fourier Ring Correlation (FRC) resolution

Qualitative validity in experiments

* Actin filaments, Alexa647 coupled to Phalloidin

Widefield Binned localizations FRC resolution = 100 nm
FWHM loc. unc. ~ 38 nm
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Fourier Ring Correlation (FRC) resolution

Qualitative validity in experiments

e Actin filaments, Venus4 label

Widefield Binned localizations FRC resolution = 130 nm
FWHM loc. unc. ~ 63 nm

Data courtesy of Kees Jalink & Daniela Leyton Puig
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Fourier Ring Correlation

t<T/2

Split Correlation

localization time series By
t>T/2 [

different options for actual splitting of the time series
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Z?ﬂ(é)?z(é)*

FRC resolution  ppre-__=

FRC
Threshold
Expected

—_—_—r— = — — e — — -

0.05 0.1 0.15
Spatial frequency (nm'1 )

Threshold frequency
determines the resolution
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Saxton, Baumeister, J. Microscopy (1982);
van Heel, Ultramicroscopy (1987); Unser, Trus, Steven, Ultramicroscopy (1987)



Qualitative validity in simulations

o (um'z) 1.10° 4.10°

Less
precision

40

A
P

More labels
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Qualitative validity in simulations

» The green circles show where the distance between the arms
is equal to FIRE

p (um™)

FIRE (nm)
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Resolution as a function of acquired frames

Acquisition of tubulin in HeLa cells with Alexa 647

T

FIRE (nm) "™
o
o

8

F-N

02 04 06 08
Relative acquisition time

The effect of density
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Effect of fitting algorithms

dSTORM acquisition of tubulin in HeLa cells with Alexa 647

FIRE =58 nm

« Maximum Likelihood
» Least Squares
e Centroid

CEN

.

°"' { "'-,‘?" 'so .

FIRE = 88 nmy’
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Effect of stage drift

GSDIM acquisition of actin filaments; HeLa cells
(Alex64'7 coupled to Phalloidin)

without drift correction

Data courtesy of Daniel Leyton Puig & Kees Jalink Drift corrected ~ 70 nm
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Resolution prediction

» Expected value of the correlation curve:

Y (0+NF@) exp(-4n70%)
<FRC(Q)> _ gecircle —
+ @) Jexp(~-4703) |

D [2+(
gecircle
Number of  Object Localization
localizations  shape precision

Average localizations per molecule;
Q=0, each emitter is only seen once
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Resolution prediction

e Sample:

» Expected resolution for 2 sinusoidal lines:

27TO

<FRCresoluti0n> =
\/ W(67rpc72)

W(x) Lambert W-function

]
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Density or precision limited?

X 10° 40 nm 60 nm 80 nm

18} o simulation

Jel - theory

14}
12}

1F

p [pm?]

08f |
06} 100 nm
04r

0.2¢

0

0 5 10 15 20 25 30
G [nm]

plot lines of constant FRC resolution
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Density or precision limited?

< 10° 40 nm 60 nm 80 nm

o simulation
- theory

image resolution
= 100 nm

FRCresolution = 2noc

0 5 10 15 20 25 30
G [nm]
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Density or precision limited?

Acquisition of tubulin in HeLa cells

| ) ; /L |
Relative acquisition 1)
272;'8' =61lnm

lop.
Crossing fl?é’lm@;{
e,-;oh
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FRC computed as local measure

130

30
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Anisotropic imaging

» Generalization of FRC to anisotropic data
by correlating over lines (2D) or planes
(3D) instead of rings or spherical shells

0.8
0.7
0.6

{05
L {04
{03

y (nm)

10.2

008 004 O 004 008
x (nm) q, (hm™)



Anisotropic imaging in 3D




Anisotropic imaging in 2D

0.03

0.01
- 10.5
‘TE - 10.4
E
°-> B '03

-0.01

-0.02

-0&?.03 -0.02 -0.01 0 0.01 0.02 0.03
q, (nm”)

Fourier Line Correlation
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Relation to classical resolution

* In localization microscopy, FIRE does not reduce exactly to
the Nyquist resolution in the limit of high photon counts

e For two lines:

: 27
IG{I%(FIRE) = /5 ~1.45R,, .

* In widefield microscopy, FIRE reduces to Abbe limit for low
noise conditions

]
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FRC resolution in widetfield microscopy

Widefield acquisition of 200 nm fluorescent beads;
just repeated imaging of the same sample

60x 0.7 NA lens
0.49x Nyquist pixel size

1/7 threShOId 439 nm

437 nm

05 1 156 2 25 3 35 4 45
q[nm’] x107°
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b FIRE
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Estimated spurious correlation Q
via model

» Idea: use the expected FRC to estimate the spurious term

¢ )+NIF (@) exp(-47%0%") |

N

D [Qexp(—47r26

<FRC(Q)> _ gecircle

Y [ 2+(2+[F@E) Jexp(~470%")|

gecircle

Depends on average Number of  Object Localization
localizations per detected localizations  shape precision
emitter
Plan:

« Only calculate the numerator
« Divide the exponential away (with estimation)
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Estimated spurious correlation Q
via model

» Idea: use the expected FRC to estimate the spurious term

¢ )+NIF (@) exp(-47%0%") |

N

D [Qexp(—47r26
<FRC(Q)> _ gecircle

Number of  Object Localization
localizations  shape precision

Plan:
« Only calculate the numerator
« Divide the exponential away (with estimation)
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Estimated spurious correlation Q
via model

» Idea: use the expected FRC to estimate the spurious term

<0+ N (@)

Number of  Object Localization
localizations  shape precision

Plan:
« Only calculate the numerator
« Divide the exponential away (with estimation)
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Two color data of tubulin

Scaled FRC numerator curves

<Q+N|y(q)f

3 . - . 3 v v 3 v v v
€5 [ Alexaba7 ata | F35 [ Alexa750 J & |\ cross-channel

L smooth o, i &,

Q 4 Q 4 D

£ y plateau = \ !!lw‘!ﬂ =

5 5 - ) (4] 5

< 4 i €y -

O (] Qo

x x x

w w (T

3° 3° 3°

il B B

-.b’..'l ] 9 4 LI , ;

3 3 3

¢ A | Q=10] =, ‘ ‘ - Q=18 g ‘ ‘ | Q=0.5
“0 0.01 002 003 004 005 “0 0.01 002 003 004 005 “0 0.01 002 003 004 005

spatial frequency (nm™') spatial frequency (nm™) spatial frequency (nm)
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Two color data of tubulin

\g 118 nm
W /

\ \ii nm

)

0.01 0.02 003 004
spatial frequency (nm")

0.05

Alexabd7?
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— cross-channel
&
w061l 121 nm
. \ |
8 04 l'
5 \ u 108 nm
o | P
0.2 g

0 0.01 002 003 004 005
spatial frequency (nm")
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How to display localization images
anyway?

» Localization microscopy produces
data but no images

» Estimated fit parameters:
* X, Y, (z) position
* localization uncertainty
* intensity
 background
» goodness of fit/ Fisher information

» Reconstruction of the object in the Nyquist sense is not
considered part of the visualization process

]
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49{(47

05
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Histogram binning [Egner et al. Biophysical Journal 2007] Gaussian rendering [Betzig et al. Science 2006]
Jittered histogram binning [Krizek et al. Optics Express 2011]

]
TUDelft



Considerations for visualization

e Intuitive interpretation:
Linearity of intensity values with emitter density

[not preserved by scattergram, Triangulation, Quadtree]

* Give the best possible image resolution.

]
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o =10 (nm) p = 1000 (um™?)
400 150
O  Histogram ©  Histogram
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Why is Gaussian better than
histogram binning?

» Compute expected FRC FRC =

> 7(d)2(a)

2 ~
[z

7.

(&(q)) = ( () 2, exp(f4r°0q)
A 1 . 2 o Object: set of points
(@) =~ (@) 2 exp(27°074") o

(FRC,)~(FRC,)=(e*o )~ (277} >0

» Gaussian weights localizations to g depending their o
Imprecise localizations decrease faster as function of g

'i"u Delft (ignoring pixelation effect on histogram)



Conclusions: visualization

» Gaussian rendering is best, especially if the localization error
is large (theoretical proven)

e Gaussian rendering only better than histogram binning if each
emitter is rendered with its own localization uncertainty

» Gaussian, jittering and histogram binning give typically same
resolution

* Quad-tree and triangulation give irregular bias and should not
be used. Especially for low densities.
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From Q to emitter counting

Q=<M>+(Va<f/£/’>”’)_1]

» Q can be used to estimate <M> = the average number of
times one molecule is localized

» This requires a model for emitter switching:
/ISQK
Dark state Active Bleached

;

\/V \/V
kcn kb

3
TUDelft model also used by: Lee et al, PNAS 109, 43, 2012



o For k¢ >> kg, :

)=

40}
K1) S R ——
30} o
//
25} /
N
> 20t
v;
15 i IIl'lI
10} ¢ Model
Poisson statistics
3/ A O Asymptote
0 1 1 1
0 1000 2000 3000
Time frames

1+ —of

kk—](1 - exp(—k,,t))

b

Q/<M>

Statistical switching model

Expected number of localizations per emitter M vs. Q

kK,

Q=2 koff 1_
b eff
S
18} )
16} /’
14} e
/S
1.2 i s
4 Model
1 I.-" Poisson statistics
------- Asymptote
0.8 1 1 1
0 1000 2000 3000
Time frames
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The unknown rate constant

k. 1S estimated from cumulative localizations

5x104 | | | ' <M>:(1+ki)(1—exp(—keﬁt))ocN

C  Data G@ﬁ kb

o | Fit 504

s’ 6666@@99 Fit model:

1 © | y=a(l-exp(-0t))

% | / ‘ Results:

£ 1| _

3 g b = 4.0 104 = &,

0 1 1 1 1
0 1000 2000 3000 4000 5000
Time frames
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Control experiment with ground truth

Sparse Alexa 647 labeled antibodies on a glass surface
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Control experiment with ground truth

Photobleaching effects are correctly included

60 C  Poisson only
_ 50° 16f| © Bleaching included
8 50 o ooe®
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Cumulative localizations

Application to dual color data

Estimating the unknown rate constant

Alexa 647 Alexa 750
6 5
2x10 5x10 L L
O Data O Data
al Fit ,
%5 5 10 % o5 1 15 2 25

Time (frames)

x 10"

Time (frames) x 10"
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Application to dual color data

# of localizations per emitter and all rate constants

Alexa 647 Alexa 750
(M)=138 (M)=11
k,=3310"" k,=56-10"s"
k =18107%s" k =2.8-107s"
k, k=10 k, 1k =19

]
TUDelft



Conclusions

» FRC Image Resolution is proposed as a image based resolution
measure for localization microscopy

 Sensitive to labelling density, localization precision, sample shape

e Can deal with multiple localizations per emitter

» Counting of average localizations per emitter
v Without prior knowledge of sample structure
v Without a calibration experiment for rate constants
* Neglecting photobleaching leads to overestimation
» Also for pair-correlation approach
» Caveats:
« Transition rates are assumed constant
» False positive localizations
« Blinking/bleaching model may be too simplistic
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