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ABSTRACT

We propose a novel speckle reduction method based on shrinking the wavelet coefficients of the logarithmically
transformed image. The method is computational efficient and can significantly reduce the speckle while preserving
the resolution of the original image. Wavelet processed imagery is shown to provide better detection performance
for synthetic-aperture radar(SAJt) based automatic target detection/recognition(ATD/R) problem.

Keywords: speckle reduction, wavelet shrinkage, Synthetic Aperture Radar, Automatic Target Detection and
Recognition, Wavelet-based noise reduction and restoration.

1 Introduction

When an object is illuminated by a coherent source of radiation and the object has a surface structure that is
roughly of the order of the wavelength of the incident radiation, the wave reflected from such a surface consists
of contributions from many independent scattering areas. Interference of these dephased but coherent waves
result in a granular pattern known as speckle. Speckle phenomena can be found in SAlt, acoustic imagery, and
laser range data. A fully developed speckle pattern appears chaotic and unordered. Thus when image detail is
important, speckle can be considered as noise that causes degradation of the image. Therefore, speckle reduction
is important in several applications of coherent imaging.

Our goal in this paper is the minimization of speckle effects when we already have a digitized speckled im-
age. Dewaele et al.4 compared several speckle reduction techniques, including Lee's statistical filter, the sigma
filter, and Crimmins' geometric ifiter. These methods achieve moderate speckle reduction, but smooth out sharp
features in the image. Novak'0 derived a polarimetric whitening (PWF) filter for fully polarimetric SAlt data.
However, this method does not utilize spatial correlation — only the correlation across polarizations is used.

We propose a novel speckle reduction method based on shrinking the wavelet coefficients of the logarithmi-
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cally transformed image. This method can provide significant speckle reduction and target-to-clutter improvement
while preserving the resolution of the original SAlt imagery. Thus it can be used as a pre-processing step to im-
porve the performance of automatic target detection and recognition algorithms based on SAlt images.

Section 2 introduces the basic statistical properties of speckle noise, and the wavelet shrinkage method for de-
noising data. Section 3 presents our method of speckle reduction for single polarization SAR image. When fully
polarimetric SAR images are available, we can combine the PWF and the wavelet shrinkage method to achieve
even better performance. Several approaches to combine these methods are discussed in section 4. The speckle
reduction techniques are applied to actual fully polarimetric, high-resolution SAR data gathered by the lincoln
Laboratory MMW airborne sensor. We compare the resulting target and clutter statistics, and show significant
improvements.

2 Preliminaries

2.1 Statistical Properties of Speckle Noise

Goodman6 did a thorough study on speckle phenomena. He shows that when the imaging system has a
resolution cell that is small in relation to the spatial detail in the object, and the speckle-degraded image has
been sampled coarsely enough that the degradation at any pixel can be assumed to be independent of the
degradation at all other pixels, coherent speckle noise can be modeled as multiplicative noise. Also, the real and
imaginary parts of the complex speckle noise are independent, have zero mean, and are identically distributed
Gaussian random variables. Arsenault1 shows that when the image intensity is integrated with a finite aperture
and logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a
normal probability much faster than the intensity distribution. Thus we have

(rn, n) = (rn, n) + (m, n) (1)

where = ln(IyI), and y is the observed complex SAR imaginary. x is the desired texture information, but it
is contaminated by the speckle noise e. If an integrating aperture is used, and if we assume that the size of the
aperture is small enough to retain texture detail, then is close to Gaussian distributed. The goal for speckle
reduction is equivalent to finding the best estimate of x.

2.2 De-noising via Wavelet Shrinkage

Recently Donoho5 has proposed a wavelet thresholding procedure for optimum recovering functions from
additive Gaussian noisy data. Let

yj = f(t) + oz, (2)

where f is the unknown function of interest, the t are equispaced points on the unit interval, and z, are i.i.d.
Gaussian white noise having zero mean and unit variance. By the 1960's it was known that it is not possible to
get estimates which work well for any function f. Donoho and Johnstone5 have developed the following wavelet
shrinkage method:

Suppose we have N data points of the form 2 and that o is known.
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1. Apply a wavelet transform to the data, obtaining N wavelet coefficients (w,k).

2. Set a threshold t, = /2 log(n)o-//, and apply the soft threshold nonlinearity ü =sgn(w)(Iw — t) with
the threshold value t = t . This is done for each wavelet coefficient individually.

3. Invert the wavelet transform, to get the estimated signal f (t).

The procedure has three distinct features: 1) The estimate does not exhibit any noise-induced structures, unlike
most minimum mean square methods. 2) At the same time, sharp features are maintained. 3) f (t) achieves
almost the minimax mean square error over a wide range of smoothness classes.

3 Speckle Reduction via Wavelet Shrinkage

3.1 The Details of the Method

Based on the above discussion, we propose the following method for speckle reduction:

Wavelet I Soft I Inverselog Ii —.I . —.--ø..f WaveletTransform I Thresholding I Transform

Figure 1: Speckle Reduction via Wavelet Shrinkage

Although, this is a straight forward application of Donoho's scheme, a number of important factors have to
be carefully decided.

Choice of wavelet: Under the name of wavelet analysis, there are a vast amount of choices, such as
Daubechies' family of wavelets, Coiflets, M-band wavelets7 , wavelet packets,3 and space-varying wavelets.2'8
Longer wavelets with higher regularity tend to give a little better result in term of speckle reduction. However,
if the wavelet filter is too long, details of the image might be oversmoothed. Also the computational complexity
is nearly proportional to the length of the wavelets. So we choose length-4 Daubechies' wavelet, which achieves
a balance between speckle reduction and the improvement in target-to-clutter contrast, and at the same time it
is also computationally very efficient.

Levels of wavelet transform: In order to separate the back ground texture and local granular speckle
phenomena, a number of levels of the wavelet transform is needed. Clearly, the level is also related to the length
of the wavelet filter. For our choice of a D4 wavelet, we usually take at least 5 level of the transform.

Size of the wavelet transform: Wavelet transforms are taken block by block. In order to minimize the
boundary effects, we use at least 128 x 128 blocks, often 512 x 512 blocks.

Thresholding: This is the most important factor of the algorithm. Since the noise variance is not known in
practice, it must be estimated from the data. A number of approaches exist.5 We found the following method is
simple and very effective. Take the high/high part of the first level of the wavelet decomposition. The estimated
noise variance is taken to be the standard deviation of the high/high part. For i.i.d. Gaussain noise, we found

SPIE Vol. 2303 / 335

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



that t = 1.5 . . . 3o- yield excellent results. Using this range of thresholds ,86.6% . . . 99.7% of the noise values have
been suppressed. Our thresholding scheme is different from the one in Donoho's work, which oversmoothes the
image. Also, we do not threshold the low/low part the final level of the wavelet decomposition. This guarantees
that the mean of the processed image is the same as the mean of the original image.

3.2 Results of Speckle Reduction

This section presents numerical results obtained by applying the wavelet shrinkage based speckle reduction
method to actual SAR imagery. The data we are using were collected near Stockbridge, NY by the Lincoln Labo-
ratory MMW SAlt. The image contains 1152 by 1536 pixels at ift by ift resolution. It represents approximately
300m by 350m. The image is composed of two regions of trees separated by a narrow strip of coarse scrub. There
are also two pairs of powerline towers in the scrub region. Figure 5 shows the 1111-polarization image of this scene.

We chose four type of clutter regions in this image: trees, scrub, grass and shadows. The powerline towers
are considered as targets. We applied the wavelet based speckle reduction algorithm, and computed the following
four statistics to evaluate the performance:

Standard-deviation-to-mean ratio (s/rn) : The quantity s/rn(both in power) is a measure of image speckle
in homogeneous region.6'1'4'9 We computed the s/rn ratio for each type of clutter region to quantify the
speckle reduction capacity of our algorithm.

Log standard deviation10: The standard deviation of the clutter data(in dB). This is an important quantity
that directly affects the target detection performance of a standard two-parameter CFAR algorithm.

Target-to-clutter ratio(t/c): The difference between the target and clutter means(in dB). It measures how
the target stands out of the surrounding clutter.

Deflection ratio: This is the two-parameter CFAR detection statistic.

M= (3)

where 11 15 the scalar pixel value of the cell, jl, is the estimated mean of y, and &, is the estimated standard
deviation of . After speckle reduction, M should be higher at known reflector points and lower elsewhere.

Table 1, 2 and 3 show those four values for original and processed images for four typical regions. The large
reductions of s/m and log-standard deviation indicate that a significant amount of speckle has been removed.

To visualize the result, we show the wavelet processed 1111-polarization image in figure 6. We can see from
the image that speckle is greatly reduced while sharp features are maintained. The computational complexity of
the wavelet shrinkage method is of 0(N), where N is the size of the data. Thus our proposed method is efficient.
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Table 1: s/rn for clutter data

[________________
Trees Scrub Grass Shadow

OriginalHH 1.8207 1.3366 1.0590 1.2152
Wavelet Processed 1.0602 0.5740 0.4251 0.5137

Table 2: log — std for clutter data

L________________
Trees Scrub Grass Shadow

Original 1111 7.2431 6.0598 5.4190 5.6231
Wavelet Processed 4.3230 2.4263 1.8283 1.9988

4 Speckle Reduction in Multipolarization SAR Imagery

The availability of fully polarimetric SAR data makes it possible to reduce the speckle by utilizing the correla-
tions between the co-polarized (HH, VV) and cross-polarized (IIV, VII) images. Novak10 derived a polarimetric
whitening fflter(PWF) which in theory is optimal ifthe correlations between 1111, HV, and VV are known for every
pixel. However, study9 shows that this is rarely the case. Lee9 proposes an adaptive method which estimates the
correlations using a moving window. However, the optimal window size is hard to choose.

We proposes three methods for fully polarimetric SALt data. They are different combinations of the PWF and
wavelet speckle reduction method. Due to the nonlinear nature of the wavelet shrinkage method, they are not
equivalent.

Using the fully polarimetric SAR data of the same area, we tested the three methods. The statistics are
shown in the table 4, 5 and 6. The further reductions of s/m and log-standard deviation indicate that a signif-
icant amount of speckle has been removed. To demonstrate these results visually, we show the PWF processed
image of the same powerline tower scene in figure 7. Figure 8 shows the wavelet processed image. Since three
methods produce visualy similar result, only the result of method 1 is shown.

After speckle reduction, the deflection ratio should be higher at known reflector points and lower elsewhere.
In ATD/R systems,'° the deflection ratio is calculated for each cell, and compared to a constant that defines
the false alarm rate. As shown in table 6, the deflection ratio is much higher in the wavelet processed images
than that in the PWF processed image. We also tested both PWF and wavelet shrinkage methods on a SAR
image that contain several standard reflectors. At these points, the deflection ratio value is 30% to 50% higher in

Table 3: Target-to-cluter ratio(t/c) and Deflection ratio for clutter data

I

OriginalHH
I Target-to-cluter ratio(t/c)

31.1813
I Deflection ratio

5.1456
Wavelet Processed 18.4149 7.5897
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SAR Denoising

Figure 2: Method 1, Step 1: Perform PWF. Step 2: Perform wavelet denoising.
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Figure 4: Method 3, Step 1: Decorrelate with PWF matrix. Step 2: Denoise with wavelet aig. Step 3: Add
resulting three images in magnitude.

Table 4: s/rn for clutter data

Trees Scrub Grass_]_Shadow
PWF 1.3033 0.8240 0.6549 0.7007

Method 1 0.9233 0.4464 0.3034 0.3578

Method 2 0.8712 0.3757 0.2889 0.3327

Method 3 0.8272 0.3719 0.2754 0.3141
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Table 5: log — std for clutter data

[_________
Trees ] Scrub ]

Grass Shadow
PWF 4.9404 3.4292 2.9528 2.8999

Method 1 3.8321 1.8809 1.3264 1.3068

Method 2 3.5897 1.5279 1.1681 1.2310

Method 3 3.4680 1.5062 1.1371 1.1659

Table 6: Target-to-cluter ratio(t/c) and Deflection ratio for different methods.

Target-to-cluter ratio(t/c) Deflection ratio
PWF 34.0269 11.1842

Method 1 29.5359 18.0767

Method 2 24.3769 16.5064

Method 3 23.7384 16.4851

wavelet processed image than that in PWF processed image. Elsewhere in the image, the deflection ratio values
are roughly the same for both methods. This strongly indicates the advantage of our method, and suggests a
big improvement in detection performance. Also, cleaner images suggest potential improvements for classification
and recognition.

5 Summary

This paper developed wavelet based techniques for speckle reduction. The method is computationally efficient
and can significantly reduce the speckle while preserving the resolution of the original image. Considerably
increased deflection ratio strongly indicates improvement in detection performance. Also, cleaner images suggest
potential improvements for classification and recognition. We will futher investigate the following issues:

. Different thresholding scheme, like hard thresholding, or level dependent thresholding.

. Different wavelet methodes, like M-band wavelets,7 wavelet packets,3 especially space-varying wavelets.2'8
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