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Indirect Estimation of Signal-Dependent Noise With
Nonadaptive Heterogeneous Samples

Lucio Azzari and Alessandro Foi

Abstract— We consider the estimation of signal-dependent
noise from a single image. Unlike conventional algorithms that
build a scatterplot of local mean-variance pairs from either small
or adaptively selected homogeneous data samples, our proposed
approach relies on arbitrarily large patches of heterogeneous
data extracted at random from the image. We demonstrate
the feasibility of our approach through an extensive theoretical
analysis based on mixture of Gaussian distributions. A prototype
algorithm is also developed in order to validate the approach on
simulated data as well as on real camera raw images.

Index Terms— Noise estiation, signal-dependent noise, Poisson
noise.

I. INTRODUCTION

THE popularity of signal-dependent noise models, in
which the variance of the noise affecting the signal de-

pends on the mean of the signal, is based on the fact that they
well approximate noise affecting data of several kinds of ac-
quisition devices, e.g., raw data from a CCD camera. Figure 1
illustrates how the signal-dependent noise differently affects
bright and dark regions of an image, and shows a curve that de-
scribes the typical mean-variance relation of imaging sensors.

Conventional methods [1], [6]–[13] estimate points of such
mean-variance curve isolating and separately processing seg-
ments or patches of the signal with common mean and noise
variance, so that on each segment or patch simple sample
estimators of mean and variance can be applied. In this way,
a scatterplot in the mean-variance plane is produced. Then, a
curve is fitted to the scatterplot, yielding an estimate of the
relation for the whole range of the signal. In this paper we
show that, contrary to common belief, the estimation can be
accurate even if each scatterplot point is estimated from a het-
erogeneous sample (e.g., a patch whose pixels can have very
different mean values). We justify this result through a math-
ematical modeling based on mixtures of normal distributions.

Thus, unlike conventional signal-dependent noise estimation
techniques that preprocess the image in order to work with
homogeneous samples, our approach applies robust estimators
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Fig. 1. Detail of the “Peppers” image corrupted by signal-dependent noise
with affine variance (2), with parameters a = 0.01 and b = 0.002.
(a) Noise-free image. (b) Noisy realization. (c) Cross-section.
(d) Mean �→ variance relation.

to arbitrarily large patches of heterogeneous data extracted at
random from the image.

Our analysis is focused on the camera noise models such as
the affine-variance model depicted in Figure 1. For the sake of
clarity and due to length limitation, we restrict the presentation
to the 2D image case; nevertheless, the introduced concepts
and the proposed approach apply universally to 1D signals as
well as to multidimensional data.

The paper is organized as follows. In Section II we introduce
the considered signal-dependent noise model and we describe
the conventional approach for its estimation. Next, we present
our novel noise estimation technique and a prototype algorithm
that exploits it, discussing its difference w.r.t. conventional
methods. In Section III we study the main factors contributing
to estimation errors, through a theoretical analysis and a Monte
Carlo simulation. In Section IV we show the effectiveness of
the method in real applications by estimating noise affecting
raw data from a CCD camera, and a comparison with a state-
of-the-art algorithm. Finally, in Section V and Section VI we
provide discussions and conclusions.

II. METHOD

A. Problem Statement

Let us consider a noisy observation z of a deterministic
noise-free signal y, corrupted by additive spatially uncorre-
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lated noise with signal-dependent variance:

z(x) = y(x)+ σ(y(x))ξ(x), (1)

where σ : R → R
+ is a function giving the signal-dependent

standard deviation of the noise, x ∈ X⊂ Z
2 is the pixel

coordinate, and ξ : X → R is a zero-mean independent
random noise with standard deviation equal to 1. Our goal
is to estimate the function σ .

The expectation of z(x), denoted as E{z(x)}, is the noise-
free signal y(x); at the same time, the variance var{z(x)}
and the standard deviation std{z(x)} of z(x) are, respectively,
σ 2(y(x)) and σ(y(x)), because var{y(x)} = 0.

As discussed in [2], the term ξ(x) can generally have a
different probability distribution for each different coordinate
x, i.e. ξ(x1) � ξ(x2) if x1 �= x2; in order to simplify the
mathematical model, we approximate ξ(x) as a normal distri-
bution N (0, 1). In this way the noise can be considered het-
eroskedastic Gaussian, with zero mean and signal-dependent
variance σ 2(y(x)), i.e. σ(y(x))ξ(x) ∼ N (

0, σ 2(y(x))
)
.

To provide practical experimental results of our method,
we shall refer to the affine noise variance model [5], which
is one of the most suitable for modeling the noise in digital
image sensors. According to this model, the noise variance is
approximated as

σ 2(y(x)) = ay(x)+ b, (2)

where ay (x) and b are, respectively, the variances of the
signal-dependent and signal-independent parts of the noise.
The former part is due to a photon-counting process (Poisson
distribution), while the latter is caused by a combination
of dark noise (Poisson distribution) and thermal-electronic
noise (normal distribution). Because of a central-limit theorem
argument and because of the good approximation of the
Poisson by a Gaussian, the normal approximation of ξ(x) is
valid. For (2), the problem of estimating σ 2 can be reduced
to the estimation of the two constants a and b.

B. Conventional Approach

The conventional approach for the estimation of signal-
dependent noise is to segment the image into regions where
pixels have constant intensity, and hence, because of (1),
constant noise; then, the mean and noise variance are estimated
for each region independently. In this way it is possible to
create a scatterplot that relates the noise-free intensity values
of y (abscissa) with the respective noise variances (ordinate),
that, finally, is used to approximate the function σ(y) in (1)
(or equivalently the function σ 2(y)).

There are different methods for partitioning the image, with
different complexity and accuracy. The partition can be made,
e.g., by simply using pixels extracted from a sufficiently small
window from the noisy image [9], with the constraint that the
intensity does not change much within the window [7], [8], or
by segmenting the image into level sets (bins) with individual
intensity values [1], [6], [10], [11], [13]. More sophisticated
techniques, such as DCT-based estimators [12], have been
also proposed. However, the backbone idea is still to exploit
homogeneous samples for the actual noise estimation.

Fig. 2. Scatterplot of the mean-variance pairs (ŷi ,σ̂ 2
i ), fitted line

σ̂ (y) = ây + b̂, and ground truth line σ(y) = ay + b from the “Peppers”
image, corrupted with noise parameters a = 0.01 and b = 0.0017. We use
1000 blocks of size 16 × 16 each yielding a point in the scatterplot.

The rationale of these techniques is that, being the segments
homogeneous, also the noise variance is homogeneous, as can
be trivially concluded from (1). Hence, standard estimators of
the sample mean and sample variance can be directly applied
to the segments, yielding unbiased estimates of the mean and
noise variance. In other words, the resulting scatterplot points
are distributed about the noise variance curve σ 2(y).

C. Main Idea

In contrast with the common procedure based on relatively
small homogenous segments, we show that the estimation
of each scatterplot point can be performed processing large
heterogeneous samples. As we shall demonstrate, considering
a heterogeneous group of elements taken from z, the expecta-
tions of the estimators of its mean and noise variance are still
a coordinate of a point that belongs to the function σ 2(y).
Consequently, it is not necessary to partition the image into
segments of constant intensity levels and noise variances, but it
is possible to process together parts of the image corrupted by
noise with various variance values, without compromising the
estimation. In particular, adaptive segmentation is no longer
required in order to estimate signal-dependent noise, but its
only advantage consists in limiting the positive bias due to
outliers that could occur when estimating the variance. In this
way we can avoid the segmentation step and, consequently,
simplify the entire process.

We define our approach indirect because the pair estimated
from one block does not represent directly a single relation
mean-noise variance, like for the conventional methods, but
it represents the mean and the variance of an heterogeneous
group of elements, i.e. a mixture of distributions.

An example of the scatterplot computed from the blocks
taken at random positions from the whole noisy image in
Figure 1(a) is shown in Figure 2 (black dots), with its
estimation of σ 2(y) and the ground truth.
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Fig. 3. Example of 16 × 16 windows at random position in z and at
corresponding positions in z H . (a) Windowing in z. (b) Windowing in z H .

D. Prototype Algorithm

The simplest algorithm that can leverage the above idea can
be divided in three basic steps:

(a) High-Pass Filtering: most of the energy of the noise-free
signal y is usually confined to the lower frequencies of z,
thus, applying an high-pass filter to z permits to extract
the zero mean noise from it [3]. We obtain the high-
frequency part of z, referred to as z H , by convolving z
against a 2D high-pass function ψ (e.g., a wavelet)

z H = z � ψ, (3)

where ψ has zero mean, i.e.
∑

i ψ(i) = 0, and �2-norm
equal to one, i.e.

∑
i ψ

2 (i) = 1.
(b) Local Estimation: once the detail image z H is computed,

we randomly choose N coordinates within the image z,
like in Figure 3; then, from these locations, N square
blocks W z

i , i = 1, . . . , N , of size
√

n×√
n are extracted

from z. Similarly, N blocks W H
i , i = 1, . . . , N , of

the same size and from the same positions of W z
i , are

extracted from z H . We estimate the means yi from the
blocks W z

i , while from W H
i we estimate the correspond-

ing noise variances σ 2
i . In this way, for each block W z

i ,
we obtain a pair (ŷi ,σ̂ 2

i ) which can be represented by a
point in the scatterplot. The pairs (ŷi ,σ̂ 2

i ) are, therefore,
the estimates of the blocks means and noise variances
(yi ,σ 2

i ).
Because the blocks are taken from random posi-

tions within the image, each block may contain pix-
els having various expected intensity levels. Therefore,
the distribution of noise in a single block W z

i can
be considered as a mixture of normal distributions
with different variances. This marks a principal dif-
ference with the conventional methods that look for
uniform blocks (or regions) for the estimation, and that
model the noise within a single block as realization
of a single normal distribution with given mean and
variance.

In the next section we investigate the effects of ex-
ploiting elements taken from a mixture instead of from
a single normal distribution.

(c) Fitting: in order to estimate the parameters that describe
the curve σ 2 (y), we fit the pairs (ŷi ,σ̂ 2

i ), i = 1, . . . , N ,

using a least squares (LS) method, which is the simplest
fitting technique at our disposal.

III. ESTIMATION ERROR

A. Noise Analysis

Let us model image blocks as composed by Ri regions
(piecewise modeling), with Ri ≤ n, and let W y

i denote the
noise-free block corresponding to W z

i .
We shall refer as ideal the case in which, in W H

i , the
amount of energy due to y is negligible with respect to the
noise energy. For example, this is the case when W y

i can
be treated as piecewise constant with edges having small
excursions with respect to the noise standard deviation, or,
equivalently, when the high-pass filter perfectly extract the
noise component from z. In this case, the elements of W z

i and
W H

i are, respectively, realization of two mixtures of Ri normal
distributions with probability density functions (p.d.f.’s):

f z
i (x) =

Ri∑

k=1

λ
(i)
k pz

k (x), pz
k ∼ N

(
mk, s2

k

)
, (4)

f H
i (x) =

Ri∑

k=1

λ
(i)
k pH

k (x), pH
k ∼ N

(
0, s2

k

)
, (5)

where pz
k and pH

k are, respectively, the p.d.f.’s of the k-th
normal distributions of f z

i and f H
i , λ(i)k is the proportion of

the elements of the k-th population respect to the total number
of elements n, mk is the mean of the k-th normal function in
f z
i , i.e. the k-th intensity value in W y

i , and s2
k is the variance

of both pz
k and pH

k . It is important to notice that the ideality
of this case relies mainly on the fact that the variances of the
k-th distributions are equal.

Trivially we have

yi =
Ri∑

k=1

λ
(i)
k mk . (6)

Exploiting the moments of a general mixture of normal
distributions,1 and the fact that all the pH

k have zero mean,
we obtain

σ 2
i =

Ri∑

k=1

λ
(i)
k s2

k . (7)

Considering now the particular Poisson-Gaussian noise, it
follows that the elements of W H

i can be individually modeled
as realizations of independent normal random variables with
variances defined by the affine transformation (2) of W y

i :

s2
k = amk + b.

1The expectation m and the variance s2 of a mixture of G normal
distributions are

m =
G∑

k=1

νk mk ,

s2 =
G∑

k=1

νk

[
(mk − m)2 + s2

k

]
,

where mk , s2
k and νk are, respectively, the expectation, the variance and the

proportion of the k-th distribution [4].
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Consequently, noting that
∑Ri

k=1 λ
(i)
k = 1,

σ 2
i =

Ri∑

k=1

λ
(i)
k amk +

Ri∑

k=1

λ
(i)
k b

= a
Ri∑

k=1

λ
(i)
k mk + b = ayi + b. (8)

This means that the point (yi ,σ 2
i ) belongs to the line (2).

Therefore, if ŷi and σ̂ 2
i are computed, respectively, with

unbiased estimators of the population mean and variance of a
mixture of normal distributions, the points (ŷi ,σ̂ 2

i ) will yield a
cloud scattered about the line (2), and the only error occurring
in the computation of the pair (ŷi ,σ̂ 2

i ) is the one due to the
variances of the estimators.

The above proof shows that, in ideal conditions, the pre-
sented algorithm ensures correct estimation even using blocks
affected by different noise levels.

Let us now consider a more practical scenario where the
presence of the noise-free signal is still appreciable in W H

i ,
due to strong edges and texture in W y

i . In this case, the noise
distribution in W H

i can no longer be approximated as a mixture
of zero-mean normal distributions. In practice, this means that
W H

i does not contain only noise, and that, among its detail
coefficients, there could be elements that introduce a bias in
the estimation of σ 2

i . Consequently, the estimation error does
not depend only on the variance of the estimator, but it is also
influenced by the presence of edges in W y

i .
To reduce the effect of these outliers, we use the median

of absolute deviation (MAD) [15], [16] as robust estimator of
σ 2

i and, for coherence, the median (med) as estimator of the
mean:

ŷi = med
{

W z
i

}
, (9)

σ̂ 2
i =

[
MAD

{
W H

i

}

�−1
( 3

4

)

]2

. (10)

Here, MAD
{
W H

i

} = med
{∣∣W H

i − med
{
W H

i

}∣∣}, and �−1

denotes the inverse cumulative distribution function (c.d. f.)
of the standard normal distribution, and the constant factor
1
/
�−1

( 3
4

) = 1.4826 makes the estimator asymptotically
unbiased in case of i.i.d. normal samples.

When using MAD, it is important to consider that the
relation (8) may fail, because of the potential discrepancy
between the mean and the median of distributions that are
not i.i.d. normal. Nevertheless, the use of the MAD estimator
on W H

i can be justified because of the Gaussianization of the
coefficients resulting by a transformation of the type (3) [2].
We support this thesis providing, in the next section, an
accurate study of the robust estimators errors in practical
applications.

B. Error Analysis

As described in the previous section, the estimation error
is composed by two parts: one due to the variance of the
estimators (the only one in the ideal case), and one due to the
presence of outliers (e.g., edges). In this section we analyze

Fig. 4. Examples of the patches W y
i used in the Monte Carlo simulation,

with different block sizes n and percentages of boundaries B%.

quantitatively how these outliers affect the computation of the
pairs (ŷi ,σ̂ 2

i ).
For this purpose we performed a Monte Carlo simulation

where we compute the average estimation error on a pair
(yi ,σ 2

i ) from a block containing a certain amount of edges:
• for each task, a patch containing a random number of

regions and corrupted by affine signal-dependent noise is
created;

• the patches are then grouped depending on the percentage
of edges B% within them;

• the mean-noise variance pairs are then estimated;
• the estimation errors are computed for each block;
• finally, the errors are averaged, separately, for each group.

In this way, we compute the average estimation error in
function of the amount of edges in the block.

We now describe more accurately the entire process.
1) Patch Generation and Grouping: we generate patches

W y
i containing a random number of regions; each region

of each patch is piecewise smooth with piecewise smooth
boundaries (examples are shown in Figure 4). The minimum
and maximum intensity values of each region are realization of
random variables uniformly distributed in [0, 1]. The patches
are then grouped depending on the percentage of edges B%
within them. Every patch is corrupted by the noise defined
in (2), and filtered as described in (3).2 In this way we
create W z

i and W H
i , which are used for computing ŷi and

σ̂ 2
i , respectively. The noise parameters a and b are chosen,

for each patch, as realization of random variables uniformly
distributed respectively in [0, 0.002] and [0, 0.0006], in order
to operate on noise ranges comparable to those considered
in, see [1], [2], which are representative of typical consumer
camera sensors.

2) Error Computation and Normalization: for every patch,
the estimation error ei is computed as the distance between the
point (ŷi ,σ̂ 2

i ) estimated with (9) and (10), and the ground-truth
line ay+b, i.e. the distance between (ŷi ,σ̂ 2

i ) and its orthogonal
projection (ŷi⊥ ,σ̂ 2

i⊥ ) on the line ay + b.
Intuitively, the estimation errors of the mean and variance

are function of the noise variance that we are estimating,
i.e. larger noise variance implies larger estimation error.
Consequently, estimation errors on patches having the same
amount of edges, but affected by different noise levels, can

2To eliminate the boundary artifacts in the computation of W H
i , we create

a bigger patch (padding) in order to discard the boundaries once the filtering
is performed.
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be significantly different. We normalize the square estimation
error e2

i by dividing it by the mean square error (MSE) ē2(σ̂ 2
i⊥ )

that we would have had if we were performing the estimation
on a flat patch containing only one region, and affected by
constant noise variance σ̂ 2

i⊥ . In this way, the normalized error
becomes an index of the goodness of the estimation with
respect to the simplest possible case, i.e. a single flat region.

Let us now show how the MSE ē2(·) depends on the noise
variance σ̄ 2 of a generic flat patch W

z
, denoting W

H
its

filtered version:

MSE
{
med

{
W̄ z}} = var

{
med

{
W̄ z}}

= vz
(
σ̄ 2

)
= π

2n
σ̄ 2, (11)

MSE
{

MAD
{

W̄ H
}}

= var
{

MAD
{

W̄ H
}}

= vH
(
σ̄ 2

)
= α

n
σ̄ 4, (12)

ē2
(
σ̄ 2

)
= vz

(
σ̄ 2

)
sin2 (θ)+ vH

(
σ̄ 2

)
cos2 (θ) ,

(13)

where vz(σ̄ 2) and vH (σ̄ 2) are, respectively, the variances of
the median and MAD estimators applied to the patches W

z

and W
H

, and α is a constant that depends on the function3 ψ

that we use to filter W
z

in order to obtain W
H

. The MSEs
of the estimators coincide with their variances because the
patches are flat and the estimation errors have zero mean, i.e.
the samples are unbiased because there are no outliers.

In (13), the terms sin2 (θ) and cos2 (θ) are used to compute
the orthogonal components of (11) and (12) to the line
ay + b, the only components of the variances that mislead
the estimation, with θ being the angle between the line ay +b
and the horizontal axes, i.e. θ = arctan(a).

We can finally define the normalized square estimation error
e̊2

i as

e̊2
i = e2

i

ē2(σ̂ 2
i⊥ )
. (14)

3) Averaging and Error Trend: Figure 5 shows the root
mean square error (RMSE) and the root mean normalized
square error (RMNSE) resulting from respectively averaging
the estimation errors e2

i and e̊2
i over groups of patches having

the same percentage of edges B%. We separately consider four
different window sizes n.

The RMNSE curves in Figure 5 are approximately
monotonically increasing with common minimum 1 at
B% = 0, where patches are composed of a single region and
have no internal edges. Note that the patches W y

i are piecewise
smooth, and not perfectly flat as in the ideal case; nevertheless
at B% = 0 the RMNSE is practically 1. This means that, when
B% = 0, the RMSE essentially coincides with the standard
deviation of the estimators and, when B% > 0, the estimation
errors increase almost entirely due to the presence of edges.

3In our experiments ψ is generated by separable convolution of one 1D
Daubechies wavelet kernel,

ψ = ψ1D ⊗ ψT
1D ,

where ψ1D= [−0.333, 0.807,−0.460,−0.135, 0.085, 0.035]. For this ψ , we
empirically computed α = 9.9076.

Fig. 5. RMSE and RMNSE as function of the percentage of edges B% within
each block, for block size n = 82, 162, 322, 642. The estimations have been
performed using the robust estimators in (9) and (10). (a) Root mean square
error (RMSE). (b) Root mean normalized square error (RMNSE).

IV. EXPERIMENTS ON CAMERA RAW IMAGES

To validate the proposed algorithm in a practical context,
we apply it to raw images from a digital camera. The images
are shown in the left and center columns of Figure 6 and were
taken using a Canon PowerShot S90 10-Megapixel camera. We
adjusted the exposure times in order to avoid clipping (e.g.,
overexposure). The pictures were acquired with various ISOs
and exposure times, so to have realizations of different noise
levels [14].

In the rightmost column of Figure 6, the lines estimated
by the proposed prototype algorithm (continuous lines) are
compared against those estimated by a state-of-the-art al-
gorithm [1] (dashed lines), here used as reference method.
This algorithm first preprocesses the image in order to detect
and exclude edges and texture from the noise estimation; it
then partitions the remaining image into segments of constant
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Fig. 6. Scatterplots and estimated functions for out-of-focus (red clouds and red continuous lines) and complex natural (blue clouds and blue continuous lines)
images. The images have been taken with a Canon PowerShot S90, ISO 3200 (top row), ISO 2500 (middle row), and ISO 200 (bottom row) using exposure
times respectively equal to 1/1000, 1/600, and 1/125. The estimation is performed using 2000 patches for each channel ([R,B; G1,G2] of size 64 × 64. The
dashed lines show the functions estimated by the ref. [1]. (a) Out-of-focus image. (b) Natural image. (c) Scatterplot and fitted lines. (d) Out-of-focus image.
(e) Natural image. (f) Scatterplot and fitted lines. (g) Out-of-focus image. (h) Natural image. (i) Scatterplot and fitted lines.

intensity level; a scatterplot is thus obtained by applying a
robust unbiased estimator of the variance on each segment,
with each point of the scatterplot being modeled according to
a bivariate normal distribution; the noise model parameters a
and b are finally estimated through a maximum a posteriori
fitting. For these experiments, our prototype algorithms uses
blocks of size 64 × 64, and, in order to reduce the variability
of the results on the particular random choice of the block
positions, 2000 patches are extracted from each color channel
of the images.

In Section III-A we discussed the theoretical behavior of our
method in the ideal conditions where the extracted patches are
free of edges (B% = 0 in Section III-B). In order to reproduce
these assumptions, the raw images include 3 out-of-focus
(OoF) pictures, shown in the leftmost column of Figure 6.

The lines estimated by the two algorithms (red continuous
and dashed lines) are always close to each other, confirming
that, in the ideal case, the proposed algorithm gives results
congruent to those of the reference algorithm.

The 3 pictures of a complex natural scene, shown in the
center column of Figure 6, are used to investigate the practical
case. The lines estimated with the proposed algorithm (blue
continuous lines) are again close to the reference ones (blue
dashed lines), confirming that the proposed algorithm performs
similar to the reference algorithm also on complex images.

In Figure 6, the OoF and natural pictures that are on the
same row were acquired under the same operating conditions
(ISO, exposure time, ambient temperature) and are hence
corrupted by noise with the same parameters [14]. Therefore,
the blue solid and dashed lines in each subplot may be
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Fig. 7. Example in which both proposed and reference algorithm fail
the estimation due to the presence of several outliers. Top: underexposed
image with large highly textured areas from the NED dataset [19]. Bottom:
scatterplot of mean-variance pairs with corresponding noise line σ̂2

pro(y)
estimated by the proposed prototype algorithm (red). The result is compared
with the line σ̂ 2

ref (y) estimated using the reference algorithm (green) and the
ground-truth σ 2(y) (black). Due to the overwhelming presence of outliers in
the scatterplot, both the proposed and the reference algorithm fail to correctly
estimate the noise line.

expected to coincide with the respective red lines. Indeed,
for large ISO (top and middle rows of Figure 6), the lines
estimated from OoF and natural images are very close to each
other, because the large noise variance makes easier for the
algorithms to separate the noise from the noise-free signal.
In case of small ISO (bottom row), instead, the estimation
from the natural image diverges from the OoF ones, for both
proposed and reference algorithms, since the variance of the
noise is small with respect to the signal. The degradation of
accuracy of the proposed algorithm is comparable to that of
the reference one.

In Figure 7 we report the result σ̂ 2
pro(y) of the proposed

prototype algorithm applied to an image that contains large
highly textured areas. The image belongs to the NED dataset
[19] of raw images with large areas of high-frequency texture,
which makes noise estimation particularly challenging. The
image has been captured with a Nikon D80 at ISO 125, and
the response of the sensor has been linearized by a calibrated
nonlinear correction function. In the same scatterplot we also
present the mean-variance pairs and the line σ̂ 2

ref (y) estimated
with algorithm [1], and the ground-truth line σ 2(y) too.

Both scatterplots reveal the presence of several outliers in
the intensity range y ∈ [0, 0.1], mostly generated by textures
present on the mountains. These outliers cause the misestima-
tion of the lines fitted by either the proposed and the reference

Fig. 8. Lines estimated from the images in Figure 6 separately using 2000
patches for each channel ([R,B; G1,G2]) of size n = 82, 162, 322, 642, 1282.
The results are compared with the estimates of the reference algorithm. (a)
Out-of-focus image. (b) Natural image. (c) Out-of-focus image. (d) Natural
image. (e) Out-of-focus image. (f) Natural image.

algorithm.4 This result confirms that textures and edges are
the main cause of misestimation, since they affect similary
proposed and reference algorithm, and that the scatterplot
points can be estimated using heterogeneous samples.

To evaluate the impact of the block size, we repeat the
experiment presented in Figure 6 separately using patches of
size n = 82, 162, 322, 642, 1282; the results are reported in
Figure 8. The lines estimated from the OoF images, showed
on the left column of the figure, are relatively close to each
other independent of the block size. Observing the results from
natural images, showed on the right column of the figure, we
can notice, especially at low ISO, that estimates from larger
blocks are less affected by overestimation bias.

Finally, to illustrate the essential role of the robust estima-
tors in alleviating the bias effect due to outliers from edges
and texture, we performed the same Monte Carlo simulation
described in Section III-B, using the sample mean and sample
variance to estimate the scatterplot points. In Figure 9 we show
the RMNSE of these non-robust estimators in comparison to

4A robust variant of [1] was recently published [20] while the present article
was already in press. The variant models the scatterplot points as an adaptive
mixture of Gaussian and Cauchy distributions, and thus yields more accurate
results in cases with outliers such as that illustrated in Figure 7.



3466 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 8, AUGUST 2014

Fig. 9. Root mean normalized square error (RMNSE) of the pairs median-
MAD and sample mean-sample variance for blocks of size n = 322. Robust
estimators lead to a comparable reduction of error also for the other block
sizes.

that of the med-MAD (9)–(10). Note how the robust estima-
tors, and in particular the MAD, drastically reduce the error.

V. DISCUSSION

In Section III-B and Section IV, we demonstrated that
the average estimation error of the points (yi ,σ 2

i ) may get
smaller if larger blocks are used in conjunction with robust
estimators, in spite of the fact that the samples get more
heterogeneous. However, there is also an inevitable trade-off
in the choice of the block size: when using large patches
it is unlikely that the mean (or median) yi reaches the
extremes of the distribution of the image intensity values y.
As a consequence, the scatterplot may cluster about the point
(c, ac + b), c being the mean (or median) of y over the
whole image, and, thus, the accuracy of the estimated line
may be degraded. On the other hand, smaller patches allow
the scatterplot points to distribute on a wider interval, at the
expense of higher estimation variance for each point, and risk
of larger bias on some of them. While the variance errors
may cancel out through the line fitting, the bias errors will
eventually corrupt the final estimate unless a robust fitting is
utilized.

Our analysis and algorithm are developed and validated
on the specific affine-variance model (2), and may fail for
a generic non-affine σ 2(y). On the other hand, the proposed
algorithm still gives accurate results if σ 2 is well approximated
by a locally (i.e. separately on each block) affine function of y.
On the other hand, the proposed algorithm still gives accurate
results if σ 2 is well approximated by a locally (i.e. separately
on each block) affine function of y. However, in many cases
(e.g., in the case of clipping) it can be difficult to verify the
local affinity of σ 2 without any strong assumptions on the
image y.

Let us discuss also about ways how to possibly improve
the estimation accuracy. In its prototype implementation, our
algorithm is limited by the accuracy of the MAD estimator and
thus cannot reach the accuracy of algorithms (e.g., [17]) that
adopt more sophisticated estimators for the estimation of the
variance. Likewise, the simplest LS fitting method is not robust
to outliers in the scatterplot. Therefore, the use of a better

variance estimator and a better (e.g., robust) fitting algorithm
[20] could further improve the estimation, so to possibly deal
with highly textured images such as the example in Figure 7.

Adaptive procedures such as segmentation may be crucial
for alleviating the impact of high-frequency texture on the
variance estimation, but we especially emphasize that this is
not a peculiarity of signal-dependent noise models, and it ap-
plies also to constant-variance (homoskedastic) noise models,
including additive white Gaussian noise (AWGN). In fact,
the advanced methods [17], [18] are developed for AWGN
estimation. As shown in our theoretical and experimental
analysis, the fact that the variance of the noise is not constant
(heteroskedasticity), and depends instead on the signal, does
not per se imply an additional need for adaptive segmentation.

Finally, let us note that the proposed model deals with
the estimation of signal-dependent noise that is spatially
uncorrelated, i.e. noise with diagonal covariance matrix. It is
nevertheless possible to extend the proposed approach also
to the correlated-noise case. If the correlation model (i.e. the
shape of the noise power spectral density (PSD)) is known
one can compute the noise energy in the high-pass image z H

from which the blocks W H
i are extracted, and hence normalize

the output of the variance estimator based on the product
of the PSD with the spectrum of ψ . This product can be
preconditioned by suitably downsampling the data prior to
analyzing the noise; downsampling may be also desirable, as
a means to reduce the amount of data to be processed.

VI. CONCLUSIONS

As opposed to conventional methods that require homo-
geneous samples for the estimation of mean-variance pairs,
our approach to signal-dependent noise estimation utilizes
arbitrarily large samples of possibly heterogeneous data. The
approach is backed by a Gaussian-mixture modeling, which
shows that the individual mean-variance estimates computed
from the heterogeneous samples are still representative of the
true mean-variance curve. An elementary prototype algorithm
based on this modeling is presented for the estimation of
signal-dependent noise from a single image. The algorithm
extracts large heterogeneous samples from random locations
in the image. This corresponds to a fundamental difference
versus traditional algorithms, which often involve an adaptive
segmentation of the image into narrow homogeneous seg-
ments, and it also results in a simplification of the estimation
procedure. This approach can be therefore suitable in all
applications where a simple noise estimation algorithm is
required, and which has to operate on non-intelligent devices.
Experiments on real data demonstrate the reliability of the
algorithm applied to natural images, showing that its results
are comparable with those from a state-of-the-art method.
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