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Practical Poissonian-Gaussian Noise Modeling and
Fitting for Single-Image Raw-Data

Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian, Senior Member, IEEE

Abstract—We present a simple and usable noise model for the
raw-data of digital imaging sensors. This signal-dependent noise
model, which gives the pointwise standard-deviation of the noise
as a function of the expectation of the pixel raw-data output, is
composed of a Poissonian part, modeling the photon sensing, and
Gaussian part, for the remaining stationary disturbances in the
output data. We further explicitly take into account the clipping
of the data (over- and under-exposure), faithfully reproducing the
nonlinear response of the sensor. We propose an algorithm for the
fully automatic estimation of the model parameters given a single
noisy image. Experiments with synthetic images and with real raw-
data from various sensors prove the practical applicability of the
method and the accuracy of the proposed model.

Index Terms—Clipping, digital imaging sensors, noise estima-
tion, noise modeling, overexposure, Poisson noise, raw-data.

I. INTRODUCTION

P ROGRESS in hardware design and manufacturing has
introduced digital imaging sensors having a dramatically

increasedresolution.This ismainlyachievedbyan increaseof the
pixel density. Despite the electrical and thermal characteristics
of the sensors have noticeably improved in the last decade
[15], [18], with the size of each pixel becoming smaller and
smaller, the sensor output signal’s susceptibility to photon
noise has become greater and greater. As of now, this source
of noise appears as the most significant contributor of the
overall noise in a digital imaging sensor [1]. This makes
the noise component of the raw-data output of the sensor
markedly signal-dependent, thus far from the conventional
additive white Gaussian noise modeling so widely used in
image processing. Further, with the intention of making full use
of the rather limited dynamic range of digital sensors, pictures
are usually taken with some areas purposely overexposed or
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clipped, i.e., accumulating charge beyond the full-well capacity
of the individual pixels. These pixels obviously present highly
nonlinear noise characteristics, which are completely different
than those of normally exposed pixels.

The raw-data which comes from the sensor always undergoes
various processing stages (e.g., denoising, demosaicking, de-
blurring, compression) before the final “cooked” image reaches
the user. In order to process the data and/or to attenuate the noise
in the most efficient and effective way, it is vital that a proper
modeling of the noise is considered during the various stages of
digital image processing. However, the technical datasheets of
the devices usually provide vague and inadequate figures for the
noise that are of a global nature (i.e., “average” values which are
meant to be valid for the whole sensor) [17]. Consequently, raw-
data filtering algorithms either assume independent stationary
noise models or, if a signal-dependent model is assumed, the
correct parameters for the noise are often not specified. Such
rough noise estimates are inadequate for the high-quality image
processing filters which are rapidly becoming an integral part of
the imaging chain.

There are two contributions in this paper. First, we present
a simple noise model which can accurately be used for the
raw-data. Based on the above considerations, it is a signal-de-
pendent noise model based on a Poissonian part, modeling the
photon sensing, and Gaussian part, for the remaining stationary
disturbances in the output data. We explicitly take into account
the problem of clipping (over- and under-exposure), faithfully
reproducing the nonlinear response of the sensor. Only two
parameters are sufficient to fully describe the model. These
parameters are explained in relation to the sensor’s hardware
characteristics (quantum efficiency, pedestal, gain). As a second
and most important contribution, we propose an algorithm for
the fully automatic estimation of the model parameters given a
single noisy image.

The paper is organized as follows. In Section II, we present
the model in its basic form, which ignores the clipping. The pa-
rameter estimation algorithm is then presented in Section III.
The general model with clipping requires more involved math-
ematics, and it is given in Section IV, followed by the mod-
ified estimation algorithm in Sections V and VI. Throughout
these sections, we demonstrate the accuracy of the algorithm
with synthetic test images, for which the exact noise parame-
ters are known. Experiments with real raw-data are presented in
Section VII; these experiments prove the practical applicability
of the method and confirm that the raw-data noise can indeed be
accurately modeled as a clipped Poissonian-Gaussian process.
Further comments and details on the algorithm and its imple-
mentation are given in Section VIII.

1057-7149/$25.00 © 2008 IEEE
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Fig. 1. Some examples of the standard-deviation functions � (solid lines) from the model (1) for different combinations of the constants a and b of (4): (left)
a = 0:02 , 0:06 , 0:10 , b = 0:04 and (right) a = 0:4 , b = 0:02 , 0:06 , 0:10 . The dashed lines show the corresponding functions ~� of the clipped
observation model (30), as functions of the clipped ~y (see Section IV). The small black triangles indicate the points (~y; ~�(~y)) which correspond to y = 0 and
y = 1.

II. POISSONIAN-GAUSSIAN MODELING

Let us consider the generic signal-dependent noise observa-
tion model of the form

(1)

where is the pixel position in the domain ,
is the observed (recorded) signal, is the orig-
inal (unknown) signal, is zero-mean independent
random noise with standard deviation equal to 1, and

is a function of that gives the standard deviation of the
overall noise component. Throughout the paper, we denote the
expected value (or mathematical expectation) of a random vari-
able as , its variance as , and its standard deviation as

; when any of these operators is applied to a
sequence (resp. matrix) of random variables, its output is defined
as the sequence (resp. matrix) of the operator’s outputs for the
individual random variables. The symbol is used exclusively
to denote the function of the model (1). From
follows that , i.e., the original signal can be
defined as the expected value of the noisy observations. Conse-
quently, we have , i.e., the standard
deviation of the noise is a function, namely , of the expectation
of the noisy signal.

In our modeling, we assume that the noise term is composed
of two mutually independent parts, a Poissonian signal-depen-
dent component and a Gaussian signal-independent compo-
nent

(2)

In terms of distributions, these two components are character-
ized as follows:

where and are real scalar parameters and and
denote the Poisson and normal (i.e., Gaussian) distributions.

From the elementary properties of the Poisson distribution, we
obtain the following equation for the mean and variance:

Fig. 2. Piecewise-smooth test image of size 512 � 512: original y and ob-
servation z degraded by Poissonian and Gaussian noise with parameters � =
100 (a = 0:01) and b = 0:04 .

Since and
, it follows that

and

Thus, the Poissonian has varying variance that depends on the
value of , , where . The
Gaussian component has instead constant variance equal to
.

Consequently, the overall variance of in (1) has the affine
form

(3)

which gives the standard deviation as the square root

(4)

and, in particular, and .
Some examples of standard-deviation functions for dif-

ferent combinations of the constants and are shown, as an
illustration, in Fig. 1 (solid lines).

Fig. 2 presents a simple piecewise smooth image which is
degraded by Poissonian and Gaussian noise with parameters

and . As illustrated in Fig. 1,
these parameters imply that the noise standard-deviation in the
brightest parts of the image is more than twice as large as in the
darker ones.
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A. Raw-Data Modeling

The Poissonian-Gaussian model (1), (2) is naturally suited
for the raw-data of digital imaging sensors. The Poissonian
component models the signal-dependent part of the errors,
which is essentially due to the photon-counting process, while
the Gaussian accounts for the signal-independent errors
such as electric and thermal noise. We briefly mention how
the above model parameters relate to elementary aspects of the
digital sensor’s hardware.

1) Quantum Efficiency: The parameter of is related to
the quantum efficiency of the sensor: the larger the number of
photons necessary to produce a response of the sensor (genera-
tion of an electron), the smaller the .

2) Pedestal Parameter: In digital imaging sensors, the col-
lected charge is always added to some base “pedestal” level

. This constitutes an offset-from-zero of the output data
and it can be rewritten as a shift in the argument of the signal-de-
pendent part of the noise

3) Analog Gain: We model the analog gain as an amplifica-
tion of the collected charge. Let us denote the variables before
amplification by the circle superscript

We formalize the amplification of as the multiplication of
the noise-free signal, of the Poissonian noise, and of a part of
the Gaussian noise, by a scaling constant

Here, the Gaussian noise term has been split in two compo-

nents and , , where represents the portion
of the noise that is introduced after the amplification and, thus,
not affected by the factor . The expectation and variance for
are

Hence, we come again to a model of the form (3) and (4) with

Note that now this can be negative, provided a large pedestal

and a small variance of . This does not mean that there is
a “negative” variance. Indeed, because of the pedestal,
and, therefore, .

In digital cameras, the analog gain (i.e., ) is usually con-
trolled by the choice of the ISO sensitivity setting. This can

Fig. 3. Some examples of the standard-deviation functions � (solid lines)
which are often found for the raw data. In these three examples, the param-
eters (a; b) from (4) are (1:5 � 10 ; 10 ), (6 � 10 ;�5 � 10 ), and
(10 ;�8 �10 ). The dashed lines show the corresponding functions ~� of the
clipped observation model (30) as functions of the clipped ~y (see Section IV).
The small black triangles indicate the points (~y; ~�(~y)) which correspond to
y = 0 and y = 1.

be done manually by the user, or automatically by the camera
(“auto mode”). Large ISO numbers (e.g., 800 or 1600) corre-
spond to large , and thus worse signal-to-noise ratio (SNR).
Lower values (e.g., ISO 50 or ISO 1600) yield a better SNR but
at the same time produce darker images, unless these are taken
with a longer exposure time (which corresponds to having larger

values of before the multiplication by ).
Fig. 3 shows few examples of the standard-deviation func-

tions which can typically be found for the raw data. Two of
these examples have , which corresponds to a pedestal

.

B. Heteroskedastic Normal Approximation

Throughout the following sections, we need to derive a few
results and relations which depend not only on the mean and
variance, but also on the particular distribution of the processed
samples. For the sake of simplification, we exploit the usual
normal approximation of the Poisson distribution, which gives

(5)

The accuracy of this approximation increases with the param-
eter and, in practice, for large enough1 , a Poissonian process
can be treated as a special heteroskedastic Gaussian one. We
thus obtain the following normal approximations of the errors:

(6)

where .

III. THE ALGORITHM

Our goal is to estimate the function of the obser-
vation model (1) from a noisy image . The proposed algorithm

1How large � is enough really depends on the considered application and de-
sired accuracy. The fact that the Poisson distribution is discrete is a secondary
aspect, because quantization of the digital data makes anyway discrete also er-
rors due to continuous distributions. For the considered standard-deviation es-
timation problem, we found experimentally that already with � = 10 (corre-
sponding to � = 20 for the middle intensity y = 0:5) there is virtually no
difference between the estimation accuracy of a truly Poissonian variable and
that of its Gaussian approximation.
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is divided in two main stages: local estimation of multiple ex-
pectation/standard-deviation pairs and global parametric model
fitting to these local estimates. An initial preprocessing stage,
in which the data is transformed to the wavelet domain and
then segmented into nonoverlapping level sets where the data
is smooth, precedes the estimation.

A. Wavelet Domain Analysis

Similar to [4], we facilitate the noise analysis by considering
wavelet detail coefficients defined as the downsampled
convolution

where is a 2-D wavelet function with zero mean and unity
-norm, , , and denotes the decima-

tion operator that discards every second row and every second
column. Analogously, we define the normalized approximation
coefficients as

where is the corresponding 2-D wavelet scaling function,
which we specially normalize so that .

For noisy images, the detail coefficients contain mostly
noise and, due to the normalizations of the convolution kernels,
we have

(7)

(8)

with the approximate equalities becoming accurate at points
in regions where (and, hence, ) is uniform, as we can
assume that the distribution of does not change over the small
support of the wavelets. Thus, in particular, at a point in such
uniform regions, we can assume that

(9)

and, because of decimation and orthogonality properties of
wavelet functions, that the noise degrading , as well as the
noise degrading , are independent ones.

Note that, always, . Therefore, when considering
, the above equations can be repeated, replacing

with , only provided that the factor is kept. Thus, we
come to

In our implementation, we use separable kernels
and where and are 1-D

Daubechies wavelet and scaling functions

(10)

B. Segmentation

Like in our previous work [6], we segment the data into level
sets, in each of which the image can be reasonably assumed to be

uniformly close to a certain value. Having nothing but a noisy
image at our disposal, we shall employ spatial smoothing (as
opposed to temporal smoothing, used in [6]) in order to attenuate
the noise and an edge-detector in order to stay clear from edges
when analyzing the data, thus enabling the conditions (7), (8).

There exist a myriad of different methods which can be used
for smoothing or for edge detection. However, for our purposes,
the following simple and nonadaptive methods proved adequate
for all considered experimental cases.

1) Smoothed Approximation: From , we compute a
smoothed (low-pass) image

(11)

where is positive smoothing kernel, and .
The smoothing action of the kernel should be especially strong,
so to effectively suppress most of the noise. In our implementa-
tion, we use a uniform 7 7 kernel for .

In the corresponding regions where itself is smooth,
is approximately equal to , and thus to . This is a
reasonable assumption provided that the support of does not
intersect edges during the calculation of the convolution (11).

2) Edges and Set of Smoothness: To detect edges, we use the
conventional approach where some smoothed derivatives of the
image are thresholded against an estimate of the local standard
deviation. Exploiting the fact that the mean of the absolute de-
viations of is equal to [7], we can define a rough
estimate of the local standard-deviations of as the map

We define the set of smoothness as

(12)

where and are, respectively, gradient and Laplacian op-
erators, denotes a 3 3 median filter, is the dec-
imated domain of the wavelet coefficients , and is
positive threshold constant. We realize both the Laplacian oper-
ator and the gradient operator as convolutions against 9

9 kernels. Thresholding the sum of the moduli of the Lapla-
cian and of its gradient is a heuristic way to obtain “thickened”
edges.

In Fig. 4, we show the wavelet approximation and detail co-
efficients and , restricted on the set of smoothness

(whose complement thus appears as white in the figure),
calculated for the test image of Fig. 2. Note that some of the
weakest edges have not been detected as such.

3) Level Sets (Segments): In the set of smoothness ,
we can assume that edges of the image did not interfere with
the smoothing (11), hence, that the conditions (7) and (8) hold
and that, for



FOI et al.: PRACTICAL POISSONIAN-GAUSSIAN NOISE MODELING AND FITTING FOR SINGLE-IMAGE RAW-DATA 1741

Fig. 4. From left to right: Wavelet approximation and detail coefficients z and z , restricted on the set of smoothness X , and two level-sets S (13)
computed for � = � = 1=300. The scale of this figure is half that of Fig. 2.

We identify in the smoothness set a collection of
nonoverlapping level sets (segments) ,
of the smoothed image . Each level set, characterized by its
centre value and allowed deviation , is defined as

(13)
By nonoverlapping, we mean that if . In
practice, assuming a signal in the range [0,1], one can take fixed

and equispaced ,
where the brackets indicate the rounding to the nearest larger
or equal integer. Further, we require that the level sets are non-
trivial, in the sense that each set must contain at least two
samples;2 thus, and . Fig. 4
shows two of the level sets computed for the example in Fig. 2
for . Observe that these sets are meager and quite
fragmented.

C. Local Estimation of Expectation/Standard-Deviation Pairs

For each level set, , we define the (unknown) variable

(14)

Note that and might not coincide. The level set is
used as a one domain for the computation of a pair of estimates

, where is an estimate of and is an estimate of
. In what follows, although we shall refer explicitly to ,

this variable is always used implicitly and, in the final estima-
tion of the function , the many , , remain
“hidden” variables which are modeled as unknown. Similarly,
the smoothed data and the values and used for the
construction of do not appear in the following estimation,
where only , and are used in order to compute
the estimates and .

1) Estimation of : We estimate as the sample mean of
the approximation coefficients on

(15)

2The smoothness threshold � (12) can be automatically increased in the
rare event of N < 2, i.e., when there are not enough nontrivial level sets for
the estimation. Note that X is monotonically enlarging to # X with � ,
X % # X .

2) Estimation of : The estimate is calculated as the
unbiased sample standard-deviation of the detail coefficients

on

(16)

where and the factor is
defined by [7]

(17)

This factor, which comes from the mean of the chi-distribution
with degrees of freedom, makes the estimate unbiased
for normally and identically independently distributed (i.i.d.)

.
3) Unbiasedness: Clearly, from the definition (14), is an

unbiased estimator of .
The unbiasedness of as an estimator of is a more

complex issue. As observed above, is an unbiased estimator
of provided that is normally i.i.d. on the level set

. However, we cannot claim, in general, that is iden-
tically distributed on . We remark that the assumed validity
of (7), (8) concerns individual points. It does not mean that

is constant over . As a matter of fact, especially
for large , is not constant for , which
implies that the standard deviations of the wavelet detail co-
efficients (8) are not constant over . Lacking any particular
hypothesis on the image , it is nevertheless reasonable to as-
sume that has a symmetric (discrete)
distribution centred at (with diameter bounded by ). Be-
cause of (3) and (9), we have that
has also a symmetrical distribution, which is centred at .
This makes an unbiased3 estimator of and, since

, is an asymptotically unbiased estimator of .

This asymptotic unbiasedness is relevant in the practice, since a
large corresponds to large .

We further note that, despite the segmentation and removal
of edges, the presence of sharp image features, singularities, or
even texture in the segment is not completely ruled out. This
can be effectively compensated by means of nonlinear robust

3This can be proved easily since, for x 2 X , we can treat Efz (x)g
as zero.
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estimators of the standard deviation, such as the well-known
median of absolute deviations (MAD) [12]. For the sake of
expository simplicity, in the current and in the next section,
we restrict ourself to the basic estimator (16) and postpone
considerations on robust estimation of the standard-deviation
to Section VI.

4) Variance of the Estimates: The variance of the estimates
and depends directly on the variances of the samples used

for the estimation, which are degraded by independent noise.
With arguments similar to Section III-C3, the variances of the
estimates can be expressed as

(18)

(19)

where these expressions coincide with those for the perfect case
when and are constant on [7].

5) Distribution of the Estimates: The estimates and are
distributed, respectively, following a normal distribution and a
scaled noncentral chi-distribution, which can also be approxi-
mated, very accurately for large , as a normal distribution [7].
Thus, in what follows, we treat both and as normally dis-
tributed random variables and, in particular, as

(20)

where and are defined as in (19).

D. Maximum-Likelihood Fitting of a Global Parametric Model

The maximum-likelihood (ML) approach is used to fit a
global parametric model of the function on the estimates

. Depending on the parameters and , we have
. For reasons of numerical consistency (note

that formally this may be zero or negative), for the fitting
we define a simple regularized variance-function as

(21)

where is a small regularization parameter. Hence, the

regularized standard-deviation is always well
defined, for any choice of , , and .

As discussed in Section III-C5, we can assume normality and
unbiasedness for both and . Thus, the conditional proba-
bility densities of and given are, respectively

Fig. 5. Each dot of the scatter plot corresponds to a pair (ŷ ; �̂ ) of estimates of
y and �(y ). The solid line shows the maximum-likelihood estimate �̂ of the
true standard-deviation function �. The plot of �̂ overlaps perfectly with that
of the true � (shown in Fig. 1). The estimated parameters are â = 0:01008(�̂ =

99:20) and b̂ = 0:001583( b̂ = 0:03979). The initialization parameters,
found as the least-squares solution (26), were â = 0:00994 (�̂ = 100:62)

and b̂ = 0:001649 ( b̂ = 0:04061).

Further, we observe that, because of the orthogonality of the
wavelets, and are mutually independent.4 Hence

(22)

The posterior likelihood is obtained by considering all
measurements and by integrating the densities

with respect to a prior probability density
of

(23)

The integration copes with the fact that and are unknown.
For images in the range [0,1], the simplest and most obvious
choice is to be uniform on [0,1], which implies that (23) be-
comes . In our exper-
iments, with synthetic images we use this prior. However, we
wish to note that other prior statistics have been shown to be
more representative of the histograms of natural images [10].
Let us observe that and , , are mutually
independent because the corresponding level sets and are
nonoverlapping.

From (23), the sought parameter estimates and are defined
as the solution of

(24)

4This independence is a general property of the sample mean and sample
standard-deviation, which property holds also when the estimates are computed
from the very same samples [7]. However, by sampling two independent sets of
wavelet coefficients, we have that the two estimates are necessarily independent,
regardless of the particular mean and standard-deviation estimators used, a fact
that comes useful for the forthcoming sections.
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Hence, our final estimate of the function is

(25)

Fig. 5 shows the result of the above optimization for the test
example shown in Fig. 2. It can be seen that the procedure esti-
mates the parameters of the noise with great accuracy.

1) Iterative Solution and Initialization: In our imple-
mentation, we solve the problem (24) numerically, using the
Nelder–Mead iterative downhill simplex method [13] and eval-
uating the integrals as finite sums. As initial parameters
for this iterative optimization we take the least-squares solution

(26)

(27)

where

...
...

(28)

with the factors defined as . The linear problem (26)
allows a simple direct solution by means of the normal equations
(27). While in (24) we aim at fitting the standard-deviation curve

to the estimates , (26) minimizes the residuals
with respect to the variances , treated as a linear function of
the parameters and . Here, the factor makes an
unbiased estimate of the variance [contrary to (16), which is
an unbiased estimate of the standard deviation].

IV. CLIPPING (CENSORING)

A. Clipped Observations Model

In practice, the data range, or dynamic range, of acquisition,
transmission, and storage systems is always limited. Without
loss of generality, we consider data given on the normalized
range [0,1], where the extremes correspond to the maximum and
minimum pixel values for the considered noisy image (e.g., raw
data) format. Even if the noise-free image is within the [0,1]
range, the noise can cause to exceed these bounds. We shall
assume that values exceeding these bounds are replaced by the
bounds themselves, as this corresponds to the behavior of digital
imaging sensors in the case of over- or under-exposure. Thus,
we define the clipped (or censored5) observations as

(29)

where is given by the signal-dependent noise model (1).
Let . The corresponding noise model for the
clipped observations (29) is

(30)

5Strictly speaking, the form of the so-called censored samples [2] is really
~z = z if 0 � z � 1 and no sample (i.e., censoring) if z < 0 or z > 1. Usually,
the amount of censored samples below and above the extrema are assumed as
known (Type-1 censoring). Thus, clipped (29) and censored observations can, in
a sense, be considered as equivalent. However, the formulas and estimators for
censored variables which can be found in the literature cannot be used directly
in the case of the clipped observations (29).

where again , , and the function
is defined as .

In general, ,
, and, even

though , the distributions of and
are different.
In Fig. 1, one can compare the standard-deviation functions
(dashed line) and (solid line) for different combinations of

the constants and in (4).
In the following sections, we rely on the heteroskedastic

normal approximation (6) and, hence, treat as a purely
Gaussian variable. Consequently, we model as a clipped (cen-
sored) normal variable. We note that this normal approximation
is especially relevant for values of close to 0 or 1,
where the clipping effects may be dominant. For close to 1,
we have that (5) holds with the largest values of , hence, is for
this values of that the Gaussianization of the Poissonian com-
ponent is most accurate. For close to 0, although
in (5) might not be large, the approximation holds because the
variance of becomes negligible compared to
the variance of the Gaussian part . This is true provided
that . However, if , the noise has only the Poissonian
component , which is always positive. It means that
and, thus, . Therefore, if , for our purposes
it is sufficient to consider only the normal approximation for
close to 1, as no clipping happens at 0.

B. Expectations, Standard Deviations, and Their
Transformations

To simplify the calculations, we shall assume that the two
clippings, the one from below and the one from
above , are not mixed by the randomness of the
noise, and can thus be computed independently.6 In other words,
this means that, in practice, if is close enough to 0 so that it is
possible that , then it is impossible that ; similarly,
if is close enough to 1, so that can be larger than 1, then

cannot be smaller than 0; for intermediate values of , with
, we have , i.e., clipping is not happening.

In what follows, we, therefore, treat separately the two cases:
• clipping from below (left single censoring): and are

near 0 and , thus, ;
• clipping from above (right single censoring): and are

near 1 and , thus, .
Further, we combine the results for the two cases, so to obtain

formulas which are valid for the case ,
where clipping can happen from above or below (double cen-
soring).

1) Clipping From Below (Left Single Censoring): Since
, we have that .

6Formally, this corresponds to assuming that, for a given y(x), the product
probability P (z(x) > 1) � P (z(x) < 0) is negligibly small. This condition is
satisfied provided, e.g., the stronger condition that P (z(x) < 0jy(x) > 1� �)
and P (z(x) > 1jy(x) < �) are both negligibly small for � = 0:5. These con-
ditions are all surely met in the practical cases, since there the standard deviation
�(y(x)) of z(x) is always much smaller (in fact, several orders smaller) than 0.5
and its distribution does not have heavy tails (note that [y�
�(y); y+
�(y)]
with 
 � 4 can be a rather “safe” confidence interval for z, with higher than
99.99% confidence for Gaussian distributions).
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Fig. 6. Probability density function of ~� = max(0; �), as defined by (31). In
this illustration � = 1. The height of the impulse at 0 is equal to the area under
the bell curve between �1 and 0.

Let be a normally distributed random variable
with mean and unitary variance and .

The probability density of is a generalized function de-
fined as follows:

(31)

where and are the probability density and cumulative
distribution functions (p.d.f. and c.d.f.) of the standard normal

and is the Dirac delta impulse. This function is
illustrated in Fig. 6.

Tedious but simple calculations (see, e.g., [7] or [8, Chapter
20]) show that the expectation and the variance
of the clipped are

(32)

(33)

The plots of the expectation and of the standard deviation
as functions and of

are shown in Fig. 7. Observe that is strictly positive even
for negative values of ; it is convex and strictly increasing,

as and is asymptotic to
as . The standard deviation is strictly

increasing, approaches as , and goes to
zero as .

The normal approximation (6) gives that .
“Standardization” of the noise is obtained dividing the variables
by , which gives . It means that,
by taking , we can write , .
It follows that and

. Exploiting this standardization, we can
formulate the direct and inverse transformations which link
and to and .

a) Direct transformation ( and from and ): From
the above formulas, we obtain

(34)

(35)

which give an explicit expression for the clipped observation
model (30), provided that from the basic model (1) is
known. In particular, (34) and (35) define the transformations

Fig. 7. Expectation Ef~�g and standard deviation stdf~�g of the clipped ~� =
max(0; �) as functions E and S of �, where � = Ef�g and � � N (�; 1).

Fig. 8. Standard deviation stdf~�g of the clipped ~� = max(0; �) as function
S of its expectation Ef~�g. The numbers in italic indicate the corresponding
value of �, where � = Ef�g and � � N (�; 1).

that bring the standard deviation curve to its clipped
counterpart .

The two plots in Fig. 7 can be unified, plotting as a
function of . This is shown by the function in Fig. 8.
Naturally, between and there is only a change of the
independent variables, , hence, from (35) follows
that

(36)

where can be obtained from (34).
b) Inverse transformation ( and from and ): As

clearly seen in Fig. 7, the plot of is strictly convex, which
implies that the (incremental) ratio

is in bijection with . This
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Fig. 9. Expectation Ef~�g and standard deviation stdf~�g of the clipped ~� =
max(0; �) as functions E and S of � = (Ef~�g)=(stdf~�g). The numbers in
italic indicate the corresponding value of �.

means that can be univocally determined given . Note
that this ratio is scale-invariant and that, in particular,

.
Therefore, given both and , we can obtain and, hence,
also and .

In Fig. 9, we show the plots of and , which represent
and as functions of , respec-

tively.
From the definition of , it follows that

. Substituting
in the previous equation (ob-

serve that, at this stage, is considered as unknown), we
obtain

(37)

Analogously for the standard deviation,
. Substituting

, we have

(38)

Equations (37) and (38) define the transformation that brings
the clipped standard deviation curve to its nonclipped
counterpart .

2) Clipping From Above (Right Single Censoring): The case
of clipping from above, , can be treated exactly
as the clipping from below, provided simple manipulations and

the following obvious change of variables:

a) Direct transformation ( and from and ):

(39)

(40)

(41)

b) Inverse transformation ( and from and ):

(42)

(43)

3) Combined Clipping From Above and Below (Double Cen-
soring): The formulas for the two separate clippings, the one
from below and the one from above, can be combined into “uni-
versal” formulas which can be applied to data which is clipped
in any of the two ways. Here, we undertake the assumption, dis-
cussed in Section IV-B, that the product probability of being
clipped both from above and from below is negligibly small.

a) Direct transformation ( and from and ): Since
only one kind of clipping can happen for a given , it means that
either (34) or (39) is equal to . Therefore, (37) and (42) can be
combined by summing the two right-hand sides and subtracting

(44)

Similarly, (35) and (40) cannot be simultaneously different than
. So do (36) and (41). It means that their combinations are

simply the products of the respective factors in the right-hand
sides

(45)

(46)

b) Inverse transformation ( and from and ): Analo-
gous considerations hold also for combining (37) with (42) and
(38) with (43). Consequently, we have

(47)

(48)

C. Expectation and Standard Deviation in the Wavelet Domain

All the above results are valid also in the more general case
where the mean and the standard deviation are not calculated
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for , but rather from the corresponding detail or approximation
wavelet coefficients, respectively. More precisely

since these equalities follow from the independence of and
on the normalizations and . Therefore, in
the next section, we consider the wavelet coefficients calculated
from the clipped observations:

V. ALGORITHM: CLIPPED CASE

Our goal is to estimate the functions and which corre-
spond to the clipped observation model (30) from the clipped
image .

Pragmatically, we approach the problem using the estimators
(15) and (16) of mean and standard-deviation, without

any particular modification. Because of clipping, these are no
longer unbiased estimators of and . However, as dis-
cussed below, they can be treated as unbiased estimators of the
unknown variable , defined analogously to (14) as

and of its associated standard deviation .
Exploiting the transformations defined in the previous sec-

tion and by modeling the statistics of the estimates computed
from the wavelet coefficients of clipped variables, we modify
the likelihood function (22) and the least-squares normal equa-
tions (Section III-D1). Thus, we come to the desired estimates

of and of .

A. Local Estimation of Expectation/Standard-Deviation Pairs

1) Estimate of : The standard-deviation estimator (16)
is an asymptotically (for large samples) unbiased estimator of
the standard deviation regardless of their particular distribution.
However, for finite samples, we can guarantee unbiasedness
only when the samples are normally distributed.

In this respect, applying the estimator on the wavelet detail
coefficients (rather than directly on ) has the important
beneficial effect of “Gaussianizing” the analyzed data, essen-
tially by the central-limit theorem. In practice, the larger is the
support of the filter , the closer to a normal is the distribu-
tion of . To make the issue transparent, let us consider the
example of a constant , , and restrict our at-
tention to the clipping from below (single left censoring). Ac-
cording to the models (1) and (30), and

are also obviously constant. Then, provided
that has zero mean and , we have that has
a distribution that approaches, for an enlarging support of ,
the normal distribution . Indeed, the probability den-
sity of can be calculated as the generalized cas-
caded convolutions of the densities , of
clipped normal distributions, where is the number of nonzero

Fig. 10. Probability densities of the clipped (from below) ~� = ~z=�(y)
(thin lines) and of its wavelet detail coefficients ~� = ~z =�(y) =#
(~z
�  )=�(y) (thick lines) for different values of � = (y)=(�(y)), when  
is the 2-D Daubechies wavelet. The “Dirac peaks” at 0, characteristic of these
densities, appear here as vertical asymptotes at 0 and cannot thus be seen in the
drawing.

elements of the wavelet . We remark that all these densi-
ties are generalized functions with a scaled Dirac impulse at 0.
From (31), we have that the impulse in is
(note that the scale of the impulse does not depend on ). Be-
cause of the independence of , the probability is
the product probability ;
thus, the impulse in is , showing that
the discrete part of the distribution vanishes at exponential rate
with . The convergence to a normal distribution is rather fast,
and even for small wavelet kernels such as with

defined as (10), for which , the distribution of
is very similar to a normal for values as low as 0
(observe that the larger is , the closer is the normal approxi-
mation), as shown in Fig. 10.7 Note that for 0.5, 0, 0.5,
1 and , the amplitudes of the step discontinuity at 0 in
the distribution of are , ,

, , respectively; thus, all these distributions
are practically continuous, and, therefore, the plots in the figure
are a faithful illustration of the generalized probability densities

.
The described “Gaussianization” is important, because it en-

sures that the bias due to finite samples is not significant, al-
lowing to use the same constant (17) as in the nonclipped
case. As a rough quantitative figure of the error which may
come from this simplification, in Table I, we give the values
of the expectation8 for different combinations of

and . The cases “ ” correspond to the true
values of the standard deviation

of the clipped data, calculated
from (33) and plotted in Fig. 7. From the table, one can see that

7In [5], we consider the case where the wavelet  is replaced by the basis el-
ements of the 2-D discrete cosine transform (DCT) and show analogous figures
for � = 0 and transforms of size n� n, n =2, 3, 4. The “Gaussianization” is
observable there as well, particularly for the AC terms.

8The finite-sample numbers in Tables I and III are obtained by Monte Carlo
simulations. The simulations were computed with enough replications to have
a sample standard-deviation of the averages lower than 0.0001. Thus, the num-
bers given in the tables can be considered as precise for all shown digits. The
taken samples z were contiguous in the set S ; therefore, some dependence
was present (exact independence is found only for samples farther than the di-
ameter of the support of  , because in the considered case the distribution of z
is not normal), however, as n grows the dependence becomes negligible, since
z can be split in n =4 = 9 subsets, each with a growing number of fully
independent samples.
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TABLE I
EXPECTATION Ef�̂ g=�(y ) FOR DIFFERENT COMBINATIONS OF � = y =�(y ) AND n . THE CASES “n = 1” CORRESPOND

TO THE TRUE VALUES OF THE STANDARD DEVIATION ~�(~y)=�(y) = stdf~zg=�(y) = stdf~�g = S (�)= S (y=�(y))
OF THE CLIPPED DATA, CALCULATED FROM (33) AND PLOTTED IN FIG. 7

a handful of samples are sufficient for the finite-sample estima-
tion bias to be negligible.

2) Estimate of : Let us now consider the estimates of the
mean. Clearly, being a sample average, is an unbiased esti-
mate of , regardless of the number of samples or of the dis-
tribution of . The central-limit theorem and similar arguments
as above show that and are both normally distributed
with mean .

3) Variance of the Estimates: Ignoring the possible de-
pendence of the noise in the wavelet coefficients (due to
non-Gaussianity of the clipped variables), simple estimates of
the variances of and can be obtained from the variances

and of the wavelet coefficients and
, respectively, as in Section III-C4.

4) Distribution of the Estimates: In conclusion, similar to
Section III-C5, we model the distributions of the estimates
and as the normal

(49)

where the factors and are defined as in (19).

B. Maximum-Likelihood Fitting of the Clipped Model

It is straightforward to exploit the above analysis for the esti-
mation of the functions (30) and (1) from the clipped data

. In fact, for the ML solution (24), it suf-
fices to introduce the functions and into the definition
of the function to be fitted to the measured data, which are pairs

centered, according to (49), at . From (45), it
follows that we can define as

(50)

where the argument is, according to (44)

(51)
The conditional probability density (22) is thus modified into

(52)

Analogously to (23), the posterior likelihood is obtained by
considering all measurements and by integrating
the densities with respect to a prior as

(53)

Note that the integration in (53) is still with respect to and
that is itself an explicit function of , as it
is clear from (50)–(52). Therefore, (53) allows for direct calcu-
lation, and by solving (24) with the likelihood in place
of (23) we obtain the parameters and , which define
both the ML estimate of , exactly as in (25), and the ML
estimate of , which can be obtained from by appli-
cation of the transformations (44) and (45). Note that for the
clipped raw-data, it is unnatural to assume that is uniform on
[0,1], because in the case of overexposure the true signal could
be much larger than 1. Therefore, for the clipped raw-data, we
assume that all positive values of are equiprobable, and we
maximize9 .

1) Least-Squares Initialization: Similar to the nonclipped
case, we use a simple least-squares solution as the initial
condition for the iterative maximization of the likelihood
function. We exploit the inverse transformations (47) and (48)
from Section IV-B3b to attain a fit of with respect to the
nonclipped variables. Hence, the initial parameters are given as

, with the dependent and independent
variables transformed as

(54)

...
...

(55)

(56)

9Equivalently, we maximize

~L(a; b) = lim } ((ŷ ; �̂ )j~y = ~y)} (y)(1 + j)dy

where } is a uniform density on [0; 1+j] and the normalization factor (1+j)
enables the convergence of the sequence of integrals.
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Fig. 11. Estimation with clipped observations ~z (Fig. 2): least-squares initial-
ization. Each dot of the scatter plot corresponds to a pair (ŷ ; �̂ ) of estimates
of ~y and ~�(~y ). The circles indicate these pairs of estimates after inverse-
transformation (see (55) and (56)). The solid line shows the square root of the
least-squares estimate of the variance function � (see Section V-B1), â =

0:00945 (�̂ = 105:82), b̂ = 0:001822 ( b̂ = 0:04268). The dotted line
is the true �, while the dashed-line is the function ~� with parameters â ; b̂
used as initial condition for the iterative maximization of the likelihood (53).

Fig. 12. Estimation with clipped observations ~z (Fig. 2): ML solution. Each
dot of the scatter plot corresponds to a pair (ŷ ; �̂ ) of estimates of ~y and
~�(~y ). The solid line and dashed line show the maximum-likelihood estimates
�̂ and ~̂� of the standard-deviation functions � and ~�, respectively. â =

0:00995 (�̂ = 100:52), b̂ = 0:001552 ( b̂ = 0:03940). The plot of �̂
overlaps perfectly with that of the true �.

Figs. 11 and 12, respectively, show the initial , which cor-
responds to the parameters , and the ML estimates and

found using as initialization in the iterative maximiza-
tion of the likelihood. In Fig. 11, we can see that the inverse
transformations (47) and (48) used in (55) and (56) effectively
move the clipped estimates pairs near to their respective “non-
clipped” positions. Note also the increased accuracy of the ML
estimates compared to that of the least-squares ones.

VI. ROBUST ESTIMATES

Despite the removal of edges from , small singularities
or fine textures and edges of the image can still be present in

, within . The accuracy of the sample standard-devia-
tion estimator (16) is consequently degraded, since would
contain wild errors of large amplitude, which can cause the dis-
tribution of to become heavy-tailed. This typically leads
to an over-estimate of the standard-deviation. It is well known
that robust estimators based on order-statistics can effectively
deal with these situations.

A. Robust Standard-Deviation Estimates

To reduce the influence of these wild errors, we replace the
sample standard-deviation estimator (16) with the robust esti-

mator based on the median of the absolute deviations (MAD)
[9], [12]10

(57)

where is again a scaling factor to make the estimator un-
biased. It is well known that, for large normally i.i.d. samples,

approaches , where is the in-
verse c.d.f. of the standard normal. For small finite samples, the
values of are larger and up to (mean of
absolute deviations of ); in Table II, we give the values
of for . For larger , we can approximate

as . Note that ;
this is because in a set of i.i.d. random variables, any indi-
vidual variable has probability 0.5 of belonging to the subset
of variables smaller (or larger) than the median value. Tables
similar to Table II can be found in [14] for a few other estima-
tors of the standard deviation.

1) Variance and Distribution of the Standard-Deviation Esti-
mates: The variance of the robust estimates (57) can be approx-
imated11 as

(58)

Thus, we pay the increased robustness with respect to outliers
with a more than twice as large variance of the estimates, in
comparison to (19) (this larger variance can be seen clearly by
visual comparison of Figs. 12 and 14). However, in practice,
when working with many-megapixels images, the variance (58)
is often quite low, due to the large number of samples . Hence,
the use of the robust estimator is ordinarily recommendable.

Like the sample standard-deviation estimates, also the MAD
estimates (57) have a distribution which can be approximated
by a normal.12 In particular [and analogous to (20)]

2) Estimates of the Variance: An unbiased robust estimate
of the variance [as used by the least-squares initialization (26)]
can be obtained from the squared (57), provided multi-
plication with a bias correction factor. Using the same symbols
of Section III-D1, we denote this estimate of the variance as

, where the factor can be approximated

as .

B. Maximum-Likelihood Fitting (Nonclipped)

The ML solution is found exactly as in Section III-D, pro-
vided that the estimates and factors , , are replaced

10In its general form, this estimator is defined as
(1=� )median jz (x )�median (z (x ))j:

However, when used on wavelet detail coefficients, the subtraction of the median
in the deviation is often discarded, since its expected value for these coefficients
is typically zero.

11The approximation of d in (58) can be obtained by Monte Carlo simu-
lations. A table with few of these values is found also in [14].

12The normal approximation can be easily verified by numerical simulations.
Despite all the necessary ingredients for an analytical proof can be found in [7],
it seems that this result is not explicitly reported in the literature.
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TABLE II
BIAS FACTOR � FOR THE MAD ESTIMATOR (57) FOR SMALL FINITE SAMPLES OF n INDEPENDENT NORMAL VARIABLES; � = �

TABLE III
EXPECTATION Ef�̂ g=�(y ) FOR DIFFERENT COMBINATIONS OF � = y =�(y ) and n

Fig. 13. Large-sample asymptotic expectation lim Ef�̂ g of the
median of the absolute deviations (57) as a function S of the expectation
Ef~�g = ~y =�(y ) of the clipped variables. The dashed line corresponds to
the function S from Fig. 8.

Fig. 14. Estimation with clipped observations ~z and MAD estimator (59)
(Fig. 2): maximum-likelihood solution. Each dot of the scatter plot corre-
sponds to a pair (ŷ ; �̂ ) of estimates of ~y and ~�(~y ). The solid line and
dashed line show the maximum-likelihood estimates �̂ and ~̂� of the
standard-deviation functions � and ~�, respectively. The plot of �̂ overlaps
perfectly with that of the true � (shown in Fig. 1). The estimated parameters
are â = 0:01000 (�̂ = 100:04) and b̂ = 0:001594 ( b̂ = 0:03992).

by their respective “ ” counterparts , , in
(22)–(24) and (28).

C. Clipped Observations

Let us now apply the MAD estimator (57) to the wavelet co-
efficients of the clipped observations

(59)

Fig. 15. Piecewise-smooth test image of Fig. 2 with thin text superimposed:
original y and observation z degraded by Poissonian and Gaussian noise with
parameters � = 100 (a = 0:01) and b = 0:04 .

Although robust with respect to outliers of large amplitude, the
MAD estimator is sensitive to the asymmetry in the distribution
of the samples [14] and even the limiting value is,
as one can expect from the presence of the inverse c.d.f. of the
normal distribution, essentially correct for normally distributed
samples only. Thus, contrary to the sample standard-deviation,
the MAD estimator is not asymptotically unbiased

(60)

Let us investigate this estimation bias for large, as well as for
small finite samples. As in Section V-A, we restrict ourselves to
the case of clipping from below for a constant ,

, and apply the estimator (57) to the corresponding . In
Table III, we give the expectations for different
combinations of and . The same considerations
which we made commenting Table I can be repeated also for
Table III.

We use the expectations of large-sample estimates (values
with in Table III) as a numerical definition of

. In this way, we define the function
which gives as a function of . Hence,
also defined are , , and , and the corresponding
analogs of the direct and inverse transformation formulas
(45)–(48). In particular, we define by
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Fig. 16. Robust (right) versus nonrobust (left) estimation with clipped observations ~z (Fig. 15): ML solutions. Each dot of the scatter plot corresponds to a pair
(ŷ ; �̂ ) of estimates of ~y and ~�(~y ). The solid lines show the maximum-likelihood estimates �̂ of the standard-deviation function �. The dashed lines show
the maximum-likelihood estimates ~̂� and ~̂� of the standard deviation function ~� and of the function ~� , respectively. The dotted line is the true �. The

parameters estimated by the two methods are â = 0:01415(�̂ = 70:68), b̂ = 0:000951( b̂ = 0:03084), and â = 0:01108(�̂ = 90:29), b̂ = 0:001524( b̂ =
0:03904), respectively.

In Fig. 13, we show the plot of superimposed on the
plot of (dashed line). The vertical difference between the
two plots in the figure is the bias13 of (57) as an estimator of

. These differences can also be seen
(as a function of ) by comparing the last rows of the Tables I
and III, for the cases and , respectively.

For the case of the MAD estimator, formula (49) needs, there-
fore, to be modified as follows:

The specific allows us to take into account of the differ-
ence (60) here and in the following ML esti-
mation of the functions and .

1) Maximum-Likelihood Fitting (Clipped): The ML solution
is found exactly as in Section V-B, provided that the functions

, , and defined above and estimates and factors
, , are used, in place of their respective “nonro-

bust” counterparts, in (50) and (52)–(56). The found parameters
and define simultaneously three functions: from (25), we

obtain , a ML estimate of ; , a ML estimate of ; and
, a ML estimate of

around which are scattered the estimates .

In Fig. 14, we show the ML estimates and obtained
for the clipped from Fig. 2, using the MAD. We can see that,
despite the larger variance of the estimates (as compared
to in Fig. 12), the final estimated parameters and the corre-
sponding are essentially the same as those obtained using
the sample standard-deviation. In the figure, note the slightly
different shape of the plot of compared to .

D. Another Example

To demonstrate a situation where the robust estimates are re-
markably more accurate than the nonrobust ones, we introduce

13Although it is not insignificant, this asymptotic bias is as not large
as it would be if applying the MAD (57) directly on ~z instead of z .
In fact, it is easy to realize that medianf~�g = 0 for � � 0. Since
obviously medianfj~�jg = medianf~�g, we have medianfj~�jg =
medianfj~� �medianf~�gjg = 0 for � � 0.

a number of thin and sharp discontinuities in the test image, as
shown in Fig. 15. At many places, due to low contrast (and also
due to the simplicity of our edge-detector), these discontinuities
cannot be detected properly and are thus eventually incorporated
in the smoothness set . In Fig. 16, we show the estimates

and obtained using the robust and the nonrobust esti-
mator. As easily expected, the estimates are inaccurate and
typically biased in favour of larger standard-deviation values. As
a result, the curve does not match with the true . The result
obtained from the robust estimates is essentially better,
with only a mild overestimation of the signal-dependent com-
ponent of the noise.

VII. EXPERIMENTS WITH RAW DATA

We performed extensive experiments with raw data14 of var-
ious digital imaging sensors under different acquisition param-
eters. The devices included three CMOS sensors from Nokia
cameraphones (300 Kpixel, 1.3 Mpixel, 5 Mpixel), two Super
CCD HR sensors [16] from Fujifilm FinePix S5600 (5 Mpixel)
and S9600 (9.1 Mpixel) cameras, three CMOS sensors from
Canon EOS 350D, 400D, and 40D SLR cameras (8 Mpixel,
10 Mpixel, 10 Mpixel), and one CCD sensor from a Nikon D80
(10 Mpixel). In all experiments, we found near-perfect fit of
our proposed clipped Poissonian-Gaussian model to the data.
We also compared the parametric curves , estimated from a
single image by the proposed algorithm, with the nonparametric
curves estimated by the algorithm [6] using 50 images; we found
the agreement to be very good, with minor differences due to the
fact that the present algorithm includes the fixed-pattern noise
(FPN) in the noise estimate, whereas [6], being a pixelwise pro-
cedure, estimates only the temporal noise. Because of length
limitation, we present here only few most significant examples
of the obtained results.

First, we show the estimated curves for the raw-data of
Canon EOS 350D with ISO 100 and 1600 (lowest and highest
user-selectable analog-gain options). An out-of-focus, hence
smooth, target (shown in Fig. 17, left) was used, with under-

14We reorder the raw-data pixels from color filter array (e.g., Bayer pattern)
sensors in such a way to pack pixels of the same color channel together. Thus,
the processed frame z is composed by a number of subimages, which portray
the different chromatic components. The boundaries between the subimages are
usually detected as edges, as can be seen in Fig. 17 (right).
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Fig. 17. From left to right: Out-of-focus image with under- and over-exposure (Canon EOS 350D, ISO 100), a natural image (Canon EOS 350D, ISO 1600) and
its wavelet detail coefficients z restricted on the set of smoothness X (the four subimages are arranged as [R;B;G ;G ]).

Fig. 18. Estimation of the standard-deviation function � from the raw-data of the out-of-focus image (Fig. 17, left).

Fig. 19. Estimation of the function � from the raw-data of the natural image (Fig. 17, center). Compare with the corresponding plots in Fig. 18.

and over-exposed parts, thus providing a complete and reliable
coverage of the dynamic range and beyond. Besides the excellent
match between the fitted parametric curve and the local
estimates ,oneshouldobservethat thecurveaccurately
follows the estimates as these approach (1,0), in agreement
with our clipped data modeling. Nearly identical curves are
found when the smooth out-of-focus target is replaced by one,
shown in Fig. 17 (center), which presents various complex
structures that may potentially impair the estimation. The
wavelet coefficients are shown in Fig. 17 (right). The
estimated curves are shown in Fig. 19, where one can also
observe the wider dispersion of the estimates (due
to the much smaller number of usable samples in the
level sets ) and that the are not distributed over the full
data-range. In Fig. 20, we show a remarkable example of
clipping from above and from below within the same frame, as
it can be found with the Fujifilm S5600 using ISO 1600. The
plot on the left is estimated from the raw-data of an evenly
exposed out-of-focus-target, shown in Fig. 21 (left); observe
that the fit of the model to the data is again nearly perfect.
The plot on the right is estimated from the raw-data of the

dark image shown in Fig. 21 (center). The curves estimated
in the two cases coincide. A further example of estimation
from a dark image, showing the accuracy of the proposed
model, is given in Fig. 22 for the Canon EOS 350D using ISO
1600. Even though in this case the estimates are
concentrated at one side of the diagram, this plot and those
shown in Figs. 18 (right) and 19 (right) are nearly identical.
Finally, a comparison with the nonparametric estimate
obtained by the method [6] is given in Fig. 23. The curve
was computed analyzing 50 shots of the same target, whereas
only one of these 50 images has been used to estimate the
function with the proposed algorithm. The shots were
acquired by a 1.3-Mpixel CMOS sensor of a cameraphone,
with an analog gain of 10 dB. We note that the nonparametric
method provides an estimate of only for the range of
values covered by the used images. Moreover, it produces
erroneous results approaching the extrema of this range (about
0.07 and 0.41), due to lack of samples. Within these extrema
(i.e., ) the two plots are, however, very close,
with minor differences due to the lack of FPN contribution
to the estimate.
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Fig. 20. Estimation from raw-data which exhibits both clipping from above (overexposure) and from below (underexposure), as with the Fujifilm
FinePix S5600 camera at ISO 1600. The plot on the left is estimated from raw-data of the evenly exposed out-of-focus image shown in Fig. 21 (left),
the one on the right is estimated from the raw-data of the dark image shown in Fig. 21 (center). The curves estimated in the two cases coincide.

Fig. 21. From left to right: out-of-focus image with under- and over-exposure (Fujifilm FinePix S5600, ISO 1600), and two largely underexposed
dark shots (Fujifilm FinePix S5600, ISO 1600, and Canon EOS 350D, ISO 1600).

Fig. 22. Estimation from the raw-data of the dark image shown in Fig. 21
(right) (Canon EOS 350D, ISO 1600); compare with plots in Figs. 18
(right) and 19 (right).

VIII. COMMENTS

A. Different Parametric Models for the Function

We remark that the proposed algorithm is not restricted to the
particular model (4). In fact, the parameters of any other para-
metric model can be estimated in the same way. It is sufficient
to modify the expression of the function in the likelihood
(23) according to the assumed parametric model. Therefore,
our algorithm has a broader scope of application than shown in
this paper and can be applied for parameter estimation of other
signal-dependent noise models, which can be approximated as
heteroskedastic normal. Heuristic or empirical models for ,
such as those found using the principal component analysis in
[11], can also be exploited in our estimation framework.

B. Multiple Images

If two or more independent realizations of the image are
available, they can be easily exploited in a fashion similar to

Fig. 23. Comparison between the parametric �̂ , estimated from a single
image, and the nonparametric curve �̂ [6] computed from 50 images.

[6]. Let us denote the different realizations as . From
(1), we have

where are mutually independent and, for a fixed ,
are i.i.d. random variables. Thus, by averaging

we obtain

(61)
where has the same distribution as any . Applying
the proposed estimation procedure on permits to estimate
the function and, hence, . In principle, the advantage
of the averaging (61) lies in the lower variance of the observa-
tion , which allows for better edge-removal and results in
estimates with lower variance. However, in practice,
cannot be taken arbitrarily large because a very large would
render the noise-to-signal ratio of too low for the noise
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TABLE IV
COEFFICIENTS OF THE POLYNOMIAL p(t) = p t USED FOR INDIRECT INTERPOLATION OF THE FUNCTIONS S , S , S , E AS IN (62)

TABLE V
COEFFICIENTS OF THE POLYNOMIAL p(t) = p t USED FOR INDIRECT INTERPOLATION OF THE FUNCTIONS S , S , S , E AS IN (62)

to be measured accurately. Hence, the averaging (61)
is valuable only provided that the true is sufficiently smooth
and that the computational precision is high.

C. Denoising Clipped Signals

A generic denoising procedure can be modeled as an operator
whose output is an estimate of the expectation of the noisy input.
It means that when we denoise , as the output we do not get an
estimate of , but rather an estimate of . However, by applying
(47) on the output, we can transform it to an estimate of . In
the same way, we can “take advantage of the noise” to obtain an
image with a higher dynamic range, since the range of and
is always smaller than that of . The interested reader can refer
to the recent work [5], where a detailed discussion about the
denoising of clipped noisy images is given.

D. Interpolation of the Functions , , ,

In our current implementation of the algorithm, we use inter-
polated values for the functions , , , , , ,

, and as no closed form expression is available. For
practicality, we resort to indirect (nonlinear) polynomial inter-
polation with exponential or logarithmic functions. The partic-
ular expressions of the used interpolant are as follows:

(62)

where is a polynomial with coefficients as
given in Table IV. For the MAD estimates (57) and re-
lated functions , , , and , we use the same
interpolant expressions as in (62) but with different polynomial
coefficients, which are given in Table V.

We note that, with (62) and the coefficients in Tables IV and
V, the interpolation achieved for and is diverging at

and , respectively. However, the interpolation
is accurate for . Therefore, in our experiments,
we constrain within these bounds. Since , , or are
used only for the weighted least-squares problem (26) and not
for the likelihood (23), the restriction on does not affect the
final estimation of the noise model parameters.

The interpolants and tables presented in this paper comple-
ment and extend similar (although not equivalent) numerical
data found in the literature [2] (and references therein), [3]. To
the best of the authors’ knowledge, no other studies of indirect
(e.g., in the wavelet domain) and robust (e.g., median-based) es-
timators of clipped samples have appeared to date and, although
limited, the results in Tables III and V are, therefore, valuable
on their own. Further, we wish to emphasize that the various
estimators proposed in the cited publications are developed for
censored Gaussian processes with fixed mean and variance, and
are thus not applicable to the more general estimation problem
considered by us.
E. Matlab Software

A MATLAB implementation of the algorithm is available at
http://www.cs.tut.fi/~foi/sensornoise.html.
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IX. CONCLUSION

We presented and analyzed a Poissonian-Gaussian noise
model for clipped (and non clipped) raw-data. An algorithm
for the estimation of the model parameters from a single noisy
image is proposed. The algorithm utilizes a special ML fitting
of the parametric model on a collection of local wavelet-do-
main estimates of mean and standard-deviation. Experiments
with synthetic images and real raw-data from camera sensors
demonstrate the effectiveness and accuracy of the algorithm in
estimating the model parameters and confirm the validity of the
proposed model.
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