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Alike for those who for To-day prepare,
And those that after some To-morrow stare,
A Muezzin from the Tower of Darkness cries
"Fools! your Reward is neither Here nor There."
© Omar Khayyam
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1 Introduction

The idea of Phase-Contrast Imaging (PCI) appeared first in light microscopy in the
1930s. Frits Zernike received the Nobel prize in physics for his invention of the
phase contrast microscope in 1953. The method was designed to greatly amplify
the contrast of a conventional microscope to visualize otherwise undetectable struc-
tures within living cells. Later on, with the development of electron microscopy and
advanced x-ray sources, the same principle was introduced into the field of transmis-
sion electron microscopy (TEM-PCI) [1] and x-ray imaging (x-ray PCI) [2]. From
that point on, x-ray PCI has found an ever increasing number of applications: it was
used to study various carbon-based composites [3, 4], evolution of microstructures in
metals and semiconductors [5, 6], small animal imaging [7, 8, 10], soft tissue imaging
[11, 12, 13, 14, 15] and studies dedicated to bio-materials [16, 17].

In this chapter you will find a brief introduction to some of the major challenges that
are encountered in the field of x-ray PCI. This overview will include the description
of the typical problems which rise in both the experimental area and the development
of the image reconstruction algorithms. Finding a solution to some of these problems
together with the exploration for new applications of x-ray PCI represents the main
motivation of this project.

1.1 Basic principles of x-ray Phase-Contrast Imaging

Before the basic mechanism of x-ray PCI can be described, we need to introduce some
fundamental principles of the photon-matter interaction. When x-rays with energies
in the range 10 – 100 keV propagate through matter, several types of interactions
(mainly photoelectric effect and Compton scattering) contribute to the attenuation
of the intensity of electromagnetic field [18]. In addition to it, depending on the
phase velocity of x-rays in the given material, the phase of the electromagnetic wave
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Chapter 1 Introduction

will change as it propagates through the specimen. Both effects are described using
the complex refractive index of the material:

n = 1− δ + iβ, (1.1)

where δ, decrement of the refractive index, is related to the change in the phase
of the electromagnetic field and β, the attenuation index, describes the attenuation
of the field. The scalar wave function that describes the electromagnetic field after
interaction with the specimen has the following form [19]:

ψ = E0 · exp(
i2πnd
λ

) = E0 · exp(
i2π(1− δ)d

λ
) · exp(−2πβd

λ
), (1.2)

here E0 stands for the amplitude of the incoming field, d denotes the thickness of
the specimen with a complex refractive index n and λ denotes the wavelength of the
electromagnetic field. The specimen thickness d is assumed to be small enough to
neglect the diffraction of the field inside the object. It is easy to see that according
to this formula β defines the exponential decay of the amplitude of the field and δ
the phase shift. When the x-ray energy is greater than the K-shell binding energy
of the element, the refractive index depends of the atomic number Z and the energy
E in the following way:

δ ∝ ρaZ

E2 ,

β ∝ ρaZ
4

E4 , (1.3)

where ρa is the atomic number density of a material (i.e. number of atoms per
unit volume)[20, 21]. For high energy x-rays (i.e. 10-100 keV), the ratio δ/β is in
the range of 102 − 103 for the majority of chemical elements. Thus, phase changes
introduced by small variations in the specimen’s density or composition will usually
be much higher than changes in attenuation. Since the decrement of the complex
refractive index is inversely proportional to the second power of the x-ray energy
whereas the attenuation coefficient to the fourth power, the phase-attenuation ratio
δ/β is generally higher at higher energies. To describe the refractive properties of a
three-dimensional object, it is useful to introduce the projected attenuation image
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1.2 X-ray Phase-Contrast Imaging techniques

µ(x, y) and the projected phase shift φ(x, y):

µ(x, y) = 2π
λ
·
�
β(x, y, z)dz

φ(x, y) = −2π
λ
·
�
δ(x, y, z)dz. (1.4)

Here {x, y} are the coordinates in the image plane and z denotes the coordinate in
the direction of propagating x-ray beam. The intensity of the electromagnetic field
after interaction with the specimen is described by the well-known Beer-Lambert
law:

I(x, y) = |ψ(x, y)|2 = I0 · e−2µ(x,y), (1.5)

where I0 is the intensity of the initial uniform illumination. It is obvious that only
the attenuation image of the specimen and not the phase image can be determined
by measuring the intensity of the exit wave, i.e. the field directly after the object. In
fact, determination of the projected phase of the specimen φ(x, y) is not trivial due
to the extremely high frequencies of electromagnetic waves in the x-ray region and
the small refraction angles that are associated with phase shifts typical for x-ray
radiation. In order to determine the projected phase, various interference effects
are used in several different methods that are collectively referred to as x-ray PCI.
These acquisition techniques can be categorized into the following types: crystal
interferometry [2, 22], diffraction enhanced imaging (DEI) [23], gratings-based PCI
[24], aperture-based PCI [25] and propagation-based PCI [26] (see Figure 1.1).

1.2 X-ray Phase-Contrast Imaging techniques

Crystal interferometry Crystal interferometry is the oldest of all techniques devel-
oped for x-ray PCI [2]. In this approach, a splitter crystal splits an incoming parallel
x-ray beam into a reference beam and a beam that illuminates the specimen. The
two beams are subsequently merged using two additional crystals as depicted in
Figure 1.1(a). The resulting image is formed due to interference between the ref-
erence beam and the diffracted beam and depends on the optical path difference
between two beams [22]. This method allows to measure the phase image of the
object directly, which makes it the most sensitive method of all PCI techniques.
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Figure 1.1: Schematic representation of different x-ray PCI acquisition techniques.
(a) – crystal interferometry, (b) – diffraction enhanced PCI, (c) – Talbot interfer-
ometry, (d) – coded-apertures based PCI, (e) – propagation based PCI.

However, in comparison to other techniques, this method is also associated with the
largest number of technical limitations [27]. Among them is the requirement for me-
chanical stability of the setup on a sub-wavelength scale, which limits its maximum
size and the size of the specimen to several centimeters. Another technical restric-
tion is the very high monochromaticity of the system that greatly reduces the flux
and confines this technique to extremely bright x-ray sources based on synchrotron
radiation.

Diffraction Enhanced Imaging Diffraction Enhanced Imaging (DEI) or analyzer-
based PCI (ABP) is another technique that is usually confined to synchrotron fa-
cilities due to a high monochromaticity. In this method, a parallel monochromatic
x-ray beam passes through the specimen and is subsequently refracted by the an-
alyzer crystal as shown in Figure 1.1(b). A phase-contrast image can be recorded
when the analyzer crystal is slightly misaligned with respect to the Bragg diffraction
angle that is associated with the incoming monochromatic beam [23]. If a number of
phase-contrast images are recorded at different nonalignment angles, phase retrieval
algorithms can be used to retrieve images that correspond to different contrast
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1.2 X-ray Phase-Contrast Imaging techniques

Wave propagation

Figure 1.2: Illustration of the Talbot ef-
fect. A pure phase grating with a pe-
riod of g and phase shift π (left) creates
an interference pattern that results in
an array of bright and dark lines at a
fractional Talbot distance g2/8λ (right)
and restores to a uniform illumination
at g2/4λ.

mechanisms: attenuation, refraction and scattering [28, 29].

DEI is sensitive to the gradient of the phase image and allows to measure it only in
the direction perpendicular to the rotation axis of the analyzer crystal:

α ∼ λ

2π ·
∂φ(x)
∂x

, (1.6)

here α is the measured x-rays refraction angle and the coordinate x corresponds the
direction of the gradient. This technique also requires a bright monochromatic x-ray
beam and is very sensitive to the alignment of the analyzer crystal.

Talbot interferometry Talbot interferometry (or grating-based PCI) allows, simi-
larly to DEI, to measure the refraction of x-rays proportional to the gradient in the
specimen’s projected phase [24, 30]. This technique makes use of the Talbot effect
- a Fresnel diffraction phenomenon that produces a repetitive periodic interference
pattern as the wave-front propagates through space (see Figure 1.2). The Talbot
effect allows to create a periodic intensity pattern illuminating the x-ray detector.
When the specimen is placed into the x-ray beam, the pattern is distorted due to
refraction. Sub-pixel spatial distortions of the periodic illumination pattern intro-
duced by the object, can be translated into intensity variations using an analyzer
absorption grating with a suitable period (see Figure 1.1(c)). In this technique, the
gradient of the projected phase of the specimen can be reconstructed from a number
of images that are acquired after the analyzer grating is shifted relatively to the
periodic illumination pattern. Similarly to DEI, images that correspond to different
contrast modes can be retrieved from the experimental data [31]. The method has
a major advantage of providing significant contrast enhancements in medium reso-
lution regimes (permitting pixel sizes on the order of 100 µm) and remains efficient
in a relatively wide spectral bandwidth (4E/E ∼ 10%) [32]. The field of view
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Chapter 1 Introduction

for this technique is limited by the size of the grating. These factors make Talbot
interferometry very suitable for table-top implementations.

Coded-apertures based PCI Coded-apertures based PCI is to some extend similar
to grating-based PCI but does not rely on the Talbot interferometric effect. Two
identical absorbing apertures have to be aligned in the x-ray beam – the first aperture
is placed right before the specimen, whereas the analyzer aperture is placed on top
of the detector surface (see Figure 1.1(d)). The period of the apertures should
correspond to the resolution of the detector, e.g. 100 µm [25]. Like in grating-based
PCI, the intensity measured by the detector changes when the wave-front of the
x-ray beam is distorted due to phase shifts introduced by the specimen. A phase-
contrast image can be obtained using this method, by combining several images
which are recorded after shifting the analyzer aperture relative to the illumination
pattern. The simplicity of this approach makes it highly suitable for a table-top
implementation [33]. This technique might become preferable for applications that
involve x-ray with energies close to or higher than 100 keV, where it is difficult to
manufacture attenuation gratings [34].

Propagation-based PCI Propagation-based (or in-line) x-ray PCI is often pre-
ferred to the other techniques because of its simplicity. This technique relies on
a simple idea of recording an intensity image (or multiple images) of a near-field
diffraction pattern that occurs due to phase changes introduced by the object (see
Figure 1.1(e)). It does not require any x-ray optical components, gratings or masks.
Only an x-ray source and a detector are needed. However, it poses very stringent
requirements on the spatial coherence of the x-ray source and the resolution of the
detector. High spatial coherence can be achieved using x-ray sources with a small
focal spot size, or by allowing a large source-to-object distance, which is usually lim-
ited by the brightness of the x-ray source. According to the Transport of Intensity
Equation (TIE) approach for weakly absorbing objects [35],variations of intensity
image recorded in propagation-based PCI are proportional to the Laplacian of the
specimen’s phase image:

IR(x, y)
IR=0(x, y) − 1 = −λR2π · ∇

2φ(x, y), (1.7)
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1.3 X-ray sources suitable for x-ray PCI

here IR(x, y) is the intensity image measured at the propagation distanceR, IR=0(x, y)
is the contact intensity image measured at R = 0 and ∇2 is the two-dimensional
Laplacian operator. Since in propagation-based PCI, the phase-contrast effect is
proportional to the second derivative of the phase image, this imaging technique
is most sensitive to high spatial frequencies. To provide good sensitivity, a spatial
resolution in the order of microns is typically required. That makes the propagation-
based PCI an ideal technique for x-ray microscopy but a less likely candidate for
soft-tissue imaging in humans.

Until recently, the use of the propagation-based PCI and most of the other techniques
listed above, was limited to the synchrotron radiation facilities that are capable of
providing a very bright, monochromatic and spatially coherent source of x-rays.

1.3 X-ray sources suitable for x-ray PCI

Despite the diversity of experimental approaches that can be used for x-ray PCI,
up to now none of them became widely utilized in laboratories outside of the large
synchrotron radiation facilities. A firm progress in that direction is made by re-
searchers working on the prototypes of Talbot interferometers suitable for laboratory
and medical use [32, 36]. Grating-based and coded-apertures based PCI are both
compatible with medium resolution imaging (pixels size ~ 100 µm). So they can
be implemented in a laboratory, using conventional x-ray tubes and the available
x-ray detectors [37]. However, dissemination of the gratings-based PCI technique
is largely inhibited by the lack of bright table-top x-ray sources. All of the x-ray
PCI techniques described above rely on availability of the x-ray sources capable
of producing bright quasi-monochromatic radiation with a large degree of spatial
coherency. The high spatial coherency can be achieved by reducing the effective
size of the x-ray source. Taking these facts into account, a PCI-compatible x-ray
source must be capable of radiating a high photon flux from a small area, in a rel-
atively narrow spectral range. The term brilliance is usually used to characterize
the photon flux that is irradiated per unit area of the source in 0.1% of the spec-
tral bandwidth ([photons/sec·mm2·mrad2·0.1%BW]). This characteristic is essential for x-ray
sources required in any of the PCI applications.

7



Chapter 1 Introduction

Synchrotron radiation Since the invetion of x-ray PCI to nowadays, most of
the x-ray PCI experiments were carried out using synchrotron light sources. In
this type of x-ray source, the radiation is produced when high-energy electrons
(typically & 1 GeV) interact with rapidly changing electromagnetic field gener-
ated by superconducting magnets. Accelerating electrons to such high energies
requires construction of a large synchrotron rings with a circumference of hun-
dreds of meters. The typical brightness of a 3rd generation synchrotron reaches
1018 − 1022photons/sec·mm2·mrad2·0.1%BW, surpassing any other technology of x-rays gen-
eration by several orders of magnitude. Extremely high brightness and other unique
properties of the synchrotron light sources make them perfectly suitable for imple-
mentation of the x-ray PCI techniques. However, for a large number of applications,
x-ray PCI has to be implemented in the laboratory or the hospital enviroment. Tak-
ing that into account, advances in the field of novel x-ray sources play a key role in
the development of x-ray PCI.

Alternative x-ray sources Conventional x-ray tube technology exploits the combi-
nation of bremsstrahlung and x-ray fluorescence in converting the energy of electrons
accelerated by the electromagnetic field into x-rays. The maximum heat that can be
dissipated by the anode of the tube sets an upper limit to the brilliance of this type
of the x-ray source to around 1010photons/sec·mm2·mrad2·0.1%BW [38]. Currently, there are
three major alternative tabletop technologies that can significantly outperform the
rotating anode x-ray tube.

A liquid metal jet exploits the same basic principles as the conventional x-ray tube
– bremsstrahlung radiation and x-ray fluorescence [39], but uses a thin jet of liquid
metal for x-ray generation instead of a solid metal anode. This technology is reported
to be capable of delivering a brilliance of up to 1.5 ·1011photons/sec·mm2·mrad2·0.1%BW and
has a potential to gain another order of magnitude in brightness [39].

X-ray sources based on Inverse Compton Scattering (ICS) [40] offer another possi-
bility for enhanced brightness. In these sources, x-ray radiation is generated when
electrons accelerated by a linac or a tabletop synchrotron to relativistic speeds are
brought into interaction with an alternating electromagnetic field which is delivered
by a high power laser. Unlike bremsstrahlung, radiation produced by ICS sources
is nearly monochromatic (∆E/E < 10%), which translates into a naturally high
brilliance. An ISC source produced by Lyncean Technologies, Inc. is reported to
have an average brilliance of 1012photons/sec·mm2·mrad2·0.1%BW.
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1.4 Materials science applications

MIRRORCLE-6X Another technology that might be used in the implementation
of the tabletop x-ray PCI systems is also based on miniature synchrotron technology,
but relies on the bremsstrahlung phenomenon to produce x-rays. The so called MIR-
RORCLE x-ray source [41] makes use of a 1 to 20 MeV storage ring with a metallic
target positioned in the orbit of the electron beam to produce bremsstrahlung ra-
diation. Most of the relativistic electrons that circulate in the storage ring are
not stopped by the target, and the fraction of the energy dissipated in the form
of heat is much lower than in an x-ray tube. According to [42], MIRRORCLE-6X
should have a brilliance on the order of 1011photons/sec·mm2·mrad2·0.1%BW. Chapter 2 of
this thesis presents our investigation to characterize the MIRRORCLE-6X minia-
ture synchrotron. The main goal of this study was to determine whether this x-ray
source is suitable for the implementation of propagation-based PCI. During this
project we measured the contrast enhancement achievable with a PCI system based
on the MIRRORCLE-6X. Experimental measurements obtained for various settings
of this system were compared with simulations that were performed using an ex-
tensive digital model. This comparison led us to important insights concerning the
design of the MIRROCLE-6X and its potential development.

1.4 Materials science applications

Despite all recent developments of bright compact x-ray sources, a large variety of
experimental investigations now and in the near feature will still require the use of
large synchrotron sources. Extremely high brilliance, unachievable outside of the
3rd generation synchrotrons, is needed to reach micron and sub-micron spatial res-
olutions and is also required for in-situ investigations of fast dynamic processes.
Synchrotron based x-ray PCI offers a possibility to revolutionize materials science
research. The ability to study the microscopic nature of processes that take place
during both the formation and the degradation of various materials is extremely im-
portant for our understanding of their macroscopic properties. As it was mentioned
above, a number of studies was carried out using x-ray PCI in order to investigate
various materials [3, 4] including a number of in-situ investigations of dynamical
processes [5, 6]. However, in some domains of materials science, x-ray PCI was not
yet introduced. For instance, the experimental methods that are traditionally used
to study solid-state phase transformations in metals include destructive techniques
such as serial sectioning [43], and techniques that are capable of surface observa-
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Chapter 1 Introduction

tions such as Electron Backscatter Diffraction (EBSD) [44]. These techniques do
not allow to make in-situ observations of the processes that occur in the bulk of the
material. Synchrotron based x-ray diffraction techniques, such as 3D X-ray Diffrac-
tion (3DXRD) microscopy, and x-ray Diffraction-Contrast Tomography DCT [45],
were successfully used to study solid-state phase transformations and the structures
that result from them in metals [46]. However, these techniques typically have lim-
ited spatial and temporal resolution and can hardly deliver information on dynamic
processes that happen on micron or sub-micron scale. Experimental observation of
such dynamic processes play a crucial role in our understanding of the macroscopic
properties of materials.

Cementite morphology Chapter 3 is dedicated to the description of an experi-
ment carried out at the European Synchrotron Radiation Facility (ESRF), in which
propagation-based PCI is combined with x-ray DCT in order to investigate the mor-
phology of cementite grains in steel. Cementite is a iron carbide (Fe3C) that can
form in the bulk of carbon steel during various heat treatments that are applied to it
during production. Depending on the composition of steel and the type of the heat
treatment, cementite forms micron- and sub-micron scale structures with various
morphologies ranging from carbides (� 1µm in size) to pearlite lamellae and large
spherodized cementite particles (� 1µm in size). Formation of either of these forms
of cementite defines, to a large extend, the mechanical properties of the material at
the macroscopic scale and plays an important role in various industrial processes.

The main goal of this investigation is to develop a non-destructive imaging technique
with sufficient spatial resolution and contrast to detect micron-sized cementite struc-
tures within the bulk of the material. Cementite forms in the bulk of ferrite and is
less dense than the surrounding material by approximately 2-3%. This difference is
sufficient to detect a cementite structure several microns in size using propagation-
based PCI. Complimentary information about the crystallographic orientations of
the ferrite grains that surround cementite can be obtained using DCT or 3DXRD
techniques. The combinations of the techniques can be used in the future to carry out
an in-situ investigation of the formation of cementite and evolution of its morphol-
ogy in relation to the crystallographic orientation relations between the cementite
grain and the surrounding ferrite grains during a particular heat treatment. The
resulting experimental data can be subsequently used to refine theoretical models
that are employed to design the production processes for novel types of steel.
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1.5 Development of phase retrieval algorithms

Austenite growth The continuation of the work that is described in Chapter 3, is
presented in the last chapter of this Thesis. In Chapter 6 we will present further de-
velopments of an experimental imaging approach suitable for in-situ, time-resolved
observations of microscopic processes that take place during the solid-state phase
transformations in steels. As it was mentioned above, the experimental techniques
that were used for in-situ investigations so far, provided only limited information
on the processes that occur during the phase transformations at the microscopic
scale. During solid-state phase transformations, grains of the product phase (the
new phase) nucleate within the parent phase. After nucleation, which typically takes
place at the nanometer scale, the product grains start to grow, gradually replacing
the parent phase. Evolution of the three-dimensional morphology of individual
product grains was traditionally studied using computational models, but was never
directly observed in experiment. Chapter 6 reports on the experimental approach in
which propagation-based PCI was used to obtain a three-dimensional, time-resolved
reconstruction of the product grain growth during the ferrite-to-austenite phase
transformation in steel. In order to perform the experiment we developed a minia-
ture furnace that allowed us to carry out a full 360° tomographic acquisition while
the temperature of the specimen was changed in the range from 800°C to 900°C. By
performing continuous tomographic scanning while the temperature of the specimen
was increased at a very slow rate, we could obtain a three-dimensional time-resolved
reconstruction of the growing grains of the product phase during the phase trans-
formation. This work leads to important insights into the kinetics of the ferrite-
to-austenite phase transformation and the methodology that can be used to study
phase transformations in-situ.

1.5 Development of phase retrieval algorithms

The experimental work that was carried out at ESRF, inspired us to investigate the
possibility of improvement of the image reconstruction techniques that are used in
propagation-based PCI. Two aims we pursued at this stage of the research project:
improving the accuracy of the existing reconstruction methods and reducing the
amount of data needed for the accurate reconstruction. Accomplishing the first
objective allows to improve the spatial resolution of the reconstructed data while
achieving the second objective has a potential to increase the temporal resolution of
time-resolved experiments similar to the one described in Chapter 6 of this thesis.

11



Chapter 1 Introduction

The following section gives an outlook on typical challenges that are encountered
in two interrelated fields: the field of phase retrieval methods applied to PCI data
that are used to recover the projected phase image of the object from the observed
phase-contrast images and the field of tomographic reconstructions based on phase-
contrast tomography data.

X-ray Source Projected refractive index
(phase and attenuation)

Specimen

Illumination Phase 
retrieval

Propagation

Recorded phase-contrast images

Retrieved refractive index
(phase and attenuation)

x x x

Figure 1.3: Acquisition geometry for propagation-base Phase-Contrast Imaging.
Multiple phase-contrast images must be acquired in the classical approach to
retrieve a high resolution phase image.

Direct phase retrieval techniques As it was mentioned in the beginning of this
chapter, propagation-based PCI does not yield a direct measurement of the speci-
men’s phase or attenuation image. Instead, a near field diffraction pattern, that re-
sults from the combination of the attenuation and phase-contrast effects, is recorded
by the detector at a suitable distance from the specimen. The recorded diffraction
pattern depends on the wavelength of the x-ray radiation and the propagation dis-
tance (i.e. distance between the specimen and the detector). By acquiring multiple
phase-contrast images at different propagation distances, it is possible to compute
the projected attenuation and phase images of the specimen (see Figure 1.3). Dif-
ferent approaches that are used in x-ray PCI for image reconstruction, are usually
called phase retrieval methods, as they allow to recover the projected phase image of
the specimen. The conventional direct phase retrieval methods used in propagation-
based PCI can be classified into three main groups: the Contrast Transfer Function
(CTF) models [47], the Transport of Intensity Equation (TIE) models [48] and the
Mixed TIE-CTF models [49, 50]. Each of these models is based on a particular lin-
earization of the Fresnel diffraction integral that uses certain assumptions about the
nature of the reconstructed image. For that reason, in order to improve the accuracy
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Table 1.1: Typical artifacts produced by the direct phase retrieval methods de-
pending on the number of phase-contrast images recorded for different propaga-
tion distances. It is assumed that the experimental conditions comply with the
assumptions underlying the particular model.

of phase retrieval in each x-ray PCI experiment, the most appropriate model should
be chosen depending on the conditions of the experiment and the properties of the
investigated object. For instance, different CTF approaches can recover a phase
image with high spatial frequencies but fail when the object yields significant atten-
uation. A TIE model allows to calculate a more accurate phase image for strongly
attenuating objects but limits the resolution of the reconstructed image to spatial
frequencies ω < 1/

√
πλR, where R is the propagation distance. Both CTF and TIE

models have versions that are designed for objects with negligible attenuation [51].
The so-called Mixed approaches remain valid for objects with strong attenuation
and are not limited to low spatial frequencies as TIE models are. However, they
fail when the reconstructed phase image contains steep gradients such as the ones
caused by air-metal interfaces. Phase retrieval based on the phase-attenaution du-
ality principle was introduced for the TIE model by Paganin [52]. In this approach
the phase is assumed to be proportional to the attenuation with δ/β ≈ const. This
approach allows to compute a phase retrieved image from a single recorded phase-
contrast image but can only be applied to homogeneous objects or to objects that
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Chapter 1 Introduction

are composed from light elements in a limited range of x-ray energies. The phase-
attenuation duality variations of the CTF and Mixed models [53, 54] were developed
shortly after.

Phase retrieval based on any of the models listed above constitutes a linear inverse
problem. Two unknown images, the projected attenuation and phase, can be cal-
culated from a set of observed images - phase contrast images recorded at different
propagation distances. Depending on the number of observations and the particular
type of the phase retrieval model, the inverse problem associated with it will, in
general, be ill-posed. This typically means that particular spatial frequencies of the
reconstructed image will either be completely undetermined by the observations or
will be heavily corrupted by noise. Table 1 gives a rough indication of the types
of artifacts which are usually encountered due to the ill-posedness of the different
phase retrieval models. The table does not discriminate between some variations of
the phase retrieval models, e.g. the CTF model for objects with negligible atten-
uation and the CTF model for objects with weak attenuation. It is also assumed
that the models are applied to experimental data that comply with the underlying
approximations.

We believe that the number of conclusions can be drawn from Table 1. Firstly,
high-resolution, artifact-free phase retrieval (up to some critical frequency), typically
requires several phase-contrast images acquired at suitable propagation distances.
Even when several phase-contrast images can be acquired, phase retrieval will be
prone to low-frequency artifacts. Using phase-attenuation duality methods, it is
possible, in some cases, to compute an artifact-free, resolution-limited phase retrieval
from a single phase-contrast image. However, duality-based methods are valid only
for objects with constant δ/β factor and will produce artifacts when this condition
does not hold.

In order to overcome these complications, various regularization approaches were
proposed over the years [55, 56]. Depending on the regularization approach, a
specific type of prior knowledge about the solution can be incorporated into the
inverse problem. If the prior knowledge corresponds well with the genuine properties
of the reconstructed image, a correct solution may be found for an initially ill-posed
or underdetermined inverse problem. However, given various developments in the
field of regularization approaches, none of them provides a universal solution to all
phase retrieval problems.
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1.5 Development of phase retrieval algorithms

Algebraic Phase Retrieval In an attempt to find a solution for the problem of
phase retrieval based on fundamentally incomplete observations, we investigated
the possibility of using algebraic reconstruction algorithms. For the last decade
algebraic reconstruction became widely used in solving various underdetermined and
ill-posed linear problems. Various gradient-descent based techniques are used in the
field of tomographic reconstructions [57], image deblurring and denoising algorithms
[58, 59]. Chapter 4 presents the progress that was made concerning the development
of the algebraic algorithms suitable for phase retrieval (i.e. algorithms based on
iterative minimization of some objective function). In this chapter we propose a
novel approach to phase retrieval based on Total Variation (TV) minimization. This
minimization approach is based on an assumption that the reconstructed image
has a sparse gradient magnitude (i.e. the image is piece-wise constant). It was
shown to be capable of finding an accurate solution for severely underdetermined
inverse problems for which the sparsity assumption is valid. In our investigation we
have shown that most of the direct phase retrieval models can be incorporated in a
TV minimization algorithm. The resulting algebraic phase retrieval techniques are
tested using the simulated phase-contrast images and the experimentally acquired
ones.

As it was mentioned before, the field of phase retrieval methods is closely related to
the field of tomographic reconstructions. In most experiments, the phase-contrast
images are not acquired to retrieve a single phase image of the specimen, as it is
done in attenuation-contrast x-ray radiography. Instead, phase-contrast images are
recorded in a large number of directions in order to permit a three-dimensional
tomographic reconstruction of the specimen. This approach is called x-ray Phase-
Contrast Tomography (PCT). The number of directions in which the phase-contrast
images must be recorded in PCT is usually determined by the required spatial reso-
lution and is typically in the range from several hundreds to a few thousands. Taking
into account that some of the phase retrieval methods require several phase-contrast
images to be recorded at different distances from the specimen in order to reconstruct
its projected phase image, an extremely large number of images may be required
for a complete x-ray PCT acquisition. This problem is partially solved, when the
specimen is assumed to be relatively homogeneous, so only one phase-contrast im-
age has to be acquired for each tomographic direction. However, the problem of
reducing the number of images that is sufficient for tomographic reconstruction of
the specimen plays a crucial role in many experiments.
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Algebraic Phase Contrast Tomography Another problem that is often encoun-
tered in the field of PCT is related to the intrinsic ill-posedness of most of the phase
retrieval methods. As it was mentioned before, most of the phase retrieval methods
do not allow to reconstruct an accurate solution for the projected phase image of
the specimen (see Table 1.1). The artifacts that are produced during the phase
retrieval are propagated into the tomographic reconstruction and can significantly
reduce the quality of the resulting image. In Chapter 5 we present novel reconstruc-
tion algorithms that solve the combined problem of phase retrieval and tomographic
reconstruction. The idea underlying this method is based on the assumption that
the tomographic projections of the object are in general not independent from one
another. In order to produce a consistent tomographic reconstruction of an object
that falls completely within the field of view, individual projections of this object
must be interrelated [60]. The resulting redundancy of tomographic data should
allow to correct to certain extent for the errors that are made during the phase
retrieval step. So called algebraic reconstruction algorithms allow to take such re-
dundancy into account and are known in conventional tomography for a long time
[61, 62, 63, 64]. However, until recent time, algebraic reconstruction was not used for
tomographic reconstruction based on phase-contrast data. The reconstruction algo-
rithm presented in Chapter 5 is based on TV minimization. This allows not only to
find a solution to a well defined tomographic problem but, under certain conditions,
allows to find an accurate reconstruction of the specimen based on significantly
incomplete data [65]. This can be achieved for specimens that have a piece-wise
constant composition. In other words, the tomographic data of the specimen in
which the density and composition remains constant within significantly large re-
gions with well defined boundaries, may yield a very high degree of redundancy.
An accurate reconstruction of the image of such specimen can be often obtained
from only few tomographic projections. This property of tomographic reconstruc-
tion algorithms can be successfully exploited in x-ray PCT. Chapter 5 compares
the results obtained with the simulated and experimental x-ray PCT data using
conventional tomographic reconstruction and the algebraic algorithms based on TV
minimization. The algebraic approach shown in that chapter is also used in Chap-
ter 6 to reconstruct the morphology of the austenite during the solid-state phase
transformation in steel.

16



2 Miniature synchrotron
MIRRORCLE-6X

Abstract1

Purpose: The implementation of in-line x-ray phase contrast imaging (PCI) for
soft-tissue patient imaging is hampered by the lack of a bright and spatially co-
herent x-ray source that fits into the hospital environment. This article provides
a quantitative characterization of the phase-contrast enhancement of a PCI system
based on the miniature synchrotron technology MIRRORCLE-6X. Methods: The
phase-contrast effect was measured using an edge response of a plexiglass plate as
a function of the incident angle of radiation. We have developed a comprehensive
x-ray propagation model based on the system’s components, properties, and geom-
etry in order to interpret the measurement data. Monte-Carlo simulations are used
to estimate the system’s spectral properties and resolution.
Results: The measured ratio of the detected phase-contrast to the absorption con-
trast is currently in the range 100% to 200%. Experiments show that with the
current implementation of the MIRRORCLE-6X, a target smaller than 30–40 lm
does not lead to a larger phase-contrast. The reason for this is that the fraction of
x-rays produced by the material (carbon filament and glue) that is used for mount-
ing the target in the electron beam is more than 25% of the total amount of x-rays
produced. This increases the apparent source size. The measured phase-contrast is
at maximum two times larger than the absorption contrast with the current set-up.
Conclusions: Calculations based on our model of the present imaging system pre-
dict that the phase-contrast can be up to an order of magnitude larger than the

1This work is published in: [66] J. van Heekeren, A. Kostenko, T. Hanashima, H. Yamada, S.
Stallinga, S. E. Offerman and L. J. van Vliet, “Characterization of an x-ray phase contrast
imaging system based on the miniature synchrotron MIRRORCLE-6X,” Medical Physics 38,
5136–5145 (2011).

17



Chapter 2 Miniature synchrotron MIRRORCLE-6X

absorption contrast in case the materials used for mounting the target in the elec-
tron beam do not (or hardly) produce x-rays. The methods described in this paper
provide vital feedback for guiding future modifications to the design of the x-ray
target of MIRRORCLE-type system and configuration of the in-line PCI systems in
general.

2.1 Introduction

Phase Contrast Imaging (PCI) has first been introduced in optical microscopy [67]
and later in transmission electron microscopy (TEM-PCI) [1] and X-ray imaging
(X-PCI) [26, 68]. Medical application of X-PCI could provide a number of pos-
sibilities for label-free soft-tissue imaging, e.g. for contrast-agent-free angiography
(cardiovascular), mammography (oncology) [69, 70], white matter lesions detection
(neuroimaging), cartilage analysis (orthopedics) etc [71, 72, 73]. There are a num-
ber of different methods to measure X-PCI [74, 23, 22, 30]. In-line X-PCI is the
most simple and straightforward method, as it requires only small modifications to
the standard (transmission) imaging geometry. It does however, require a coherent
X-ray field of sufficient brilliance for which a (bench-top) synchrotron is needed.
Competing methods are crystal-based X-PCI [68], which is usually limited to the
use of synchrotron radiation, gratings-based X-PCI [32] and aperture-based X-PCI
[25], which can operate with conventional X-ray sources, but require modifications
to the imaging geometry.

The requirements with respect to the size and brilliance of the X-ray source that
are imposed by in-line X-PCI for medical imaging are incompatible with off-the-
shelf X-ray sources. Large-scale synchrotron radiation facilities offer high brilliance
but are far too large and far too expensive to comply with hospital infrastructure
requirements. Microfocus X-ray tubes, on the other hand, are small, but lack suf-
ficient brilliance. The development of bench-top sized high-brilliance X-ray sources
is thus of great importance for advancing in-line X-PCI for medical applications.
Miniature synchrotron X-ray sources [42, 40] are among the emerging technologies
[75, 76] that might provide the right combination of size, brilliance and X-ray energy
that is required for an effective implementation of in-line X-PCI.

We carried out a series of measurements using a prototype miniature synchrotron
X-ray source, the MIRRORCLE-6X [77]. The maximum contrast levels achievable
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with the current system in the X-PCI regime were compared to the corresponding
contrast levels of the absorption image. Here we report on these measurements and
on a model of the imaging system that includes the X-ray source characteristics,
the imaging geometry and the detector characteristics. In particular, the design of
the electron target in the present types of sources appears to be crucial in obtaining
high contrast levels, and several design improvements are deduced from the analysis
we present here.

2.2 Materials and methods

2.2.1 MIRRORCLE-6X

The imaging system investigated here is based on the compact synchrotron X-ray ra-
diation source called MIRRORCLE-6X. The synchrotron ring of the MIRRORCLE-
6X contains an electron beam accelerated to a total energy of 6MeV . A small
metallic target can be suspended on a beryllium or carbon filament inside the elec-
tron orbit to produce white spectrum Bremsstrahlung radiation ranging from 0.001
to 6MeV [78]. A cone beam of hard X-rays leaves the synchrotron ring through a
beryllium exit-window.

For the experiments presented in this paper, the MIRRORCLE-6X was operated
with an electron injection current of 75mA and an injection frequency of 400Hz.
Spherical targets composed of tungsten with a diameter of 10µm, 20µm and 40µm
were used for X-ray generation. Each target was suspended inside an epoxy droplet
attached to a carbon filament of 7.6µm in diameter. Analysis of the acquired data,
supported by simulations, show that a significant part of the radiation is generated
by the epoxy surrounding the target and the part of the target mounting wire that
is exposed to the electron beam (roughly ~ 1mm in diameter). This, so-called
compound source model, has a profound influence on the effective source size and
its spectral characteristics, and will be investigated in the subsection 2.3.3.

The absorbed radiation dose was measured at 1m distance away from the source
during each acquisition. Typical values for the measured dose are in the range of 2 to
3.5mGy/min. Using the conversion factor proposed by Yamada [79] we can estimate
that the brightness of the MIRRORCLE-6X was on the order 1010−1011photons/(s ·
mrad2 · 0.1%band). It has to be noted, however, that the conversion between the
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Figure 2.1: Top-view of the imaging setup. The sample is positioned between the
X-ray source (S) and the detector (D) allowing for magnified imaging. Object-
source distance is R1, object-detector distance is R2. The sample is mounted on
a rotation stage in order to record phase-contrast images of the rotated edge at
an angle Θ.

measured dose in mGy/min and the brightness is uncertain and relies heavily on
the accuracy with which the spectral characteristics of the system are known.

2.2.2 X-ray detector

A BaFBr : Eu2+ photo-stimulable phosphor imaging plate (IP) was used as X-
ray detector in combination with a FCR XL-1 image plate reader (Fujifilm, Tokyo,
Japan). It was shown [80] that the properties of the imaging plate are highly uniform
over its surface and that the response is linear relative to the radiation dose up to
4 · 104photons/100µm2 providing a wide dynamic range.

The Full Width at Half Maximum (FWHM) of the detector’s point-spread-function
(PSF) is in the range of 170 ∼ 200µm [80, 81]. The quantum efficiency (QE) of the
IP is given to be almost 100% for energies below 20 keV and drops to about 50% or
less for energies above 35 KeV [82, 83].

As the properties of IPs may vary between the different models, the PSF and its
spectral characteristics were estimated by us independently. The PSF of the IP used
in our experiment was estimated from the acquired reference beam-images using the
“noise method” [84, 85]. The PSF was found to be approximately Gaussian shaped
with a FWHM of 260µm. The images were sampled by the reader with a pixel pitch
of 150µm. Further discussion of the detector’s spectral characteristics is given in
subsection 2.3.2.

20



2.2 Materials and methods
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Figure 2.2: An image of a 1.95 mm plexiglass plate is acquired in the X-PCI
regime (a). An intensity fringe due to phase-contrast is clearly visible on the
image, slightly rotated relatively to the vertical axis. Image (b) shows a projected
profile, calculated using the Radon transform of the image, accounting for a small
tilt of the edge. The transmission contrast is indicated on the profile image as A,
phase-contrast enhancement is measured as the fringe amplitude (B − A)/A.

2.2.3 Geometry of the setup

For in-line X-PCI, the standard transmission imaging geometry with a divergent
beam is used (Figure 2.1). The specimen is mounted between the X-ray source
and the detector with source-object distance R1 and object-detector distance R2,
providing a magnification M = (R1 +R2)/R1.

The phase-contrast image of the specimen has an interferometric nature and is
observed as an intensity fringe located around the inhomogeneities in the projected
refractive index of the object. Given certain propagation distances R1 and R2,
the magnitude of the recorded phase-contrast image depends on the wavelength
of the X-ray radiation and the contrast transfer function (CTF) of the imaging
system. Therefore the major instrumental factors that define the contrast of the
X-PCI system of a given total length are its spectral characteristics and the spatial
resolution as dictated by the source size, the detector PSF and magnification.

The experiments were carried out in the high magnification regime with M in the
range from 12 to 14.5 in order to reach the highest possible resolution in the object
plane considering the limited resolution PSFdet of the BaFBr : Eu2+ detector. In
such a regime the effective resolution of the imaging system is primarily limited by
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the source PSFsrc.

2.2.4 Measurements

A thin plexiglass plate blocking part of the X-ray beam is often used as a standard
specimen in the investigations of the performance of X-PCI systems [86, 87]. The
observed image in this case is a transmission image of the plate combined with
the intensity fringe of the phase-contrast image that stretches along the plexiglass-
air transition (Figure 2.2). The image of such a specimen can be easily modeled,
simplifying the analysis of the system performance.

The magnitude of the phase-contrast image fringe of the plexiglass plate is highly
sensitive to the orientation of its edge with respect to the direction of the beam, as
the projection of the edge feature changes. In our experiment the plexiglass plate
(thickness 1.95mm) is mounted on a rotation stage. Series of images can be easily
recorded for a range of angles of incidence for every system setting (Figure 2.1).

2.2.5 Image processing and analysis

Since the plexiglass plate is homogeneous, it can be presented as a one-dimensional
object simplifying the analysis. Several steps have to be taken before the raw mea-
surements can be compared to the results of the model. First, a simple flat-field
correction is carried out by dividing each acquired image by a reference beam im-
age. Next, using the Radon transform, the image is integrated in the direction of
the edge, resulting in a one-dimensional edge profile (Figure 2.2b). The orientation
of the edge can be found as the angle for which the Radon transform of the image
yields the highest maximum derivative.

The ratio between the phase contrast and transmission contrast of the edge (Figure 2.2b)
can be estimated for each image by measuring the fraction of the amplitude of the
phase fringe B−A to the intensity drop due to absorption of the plexiglass plate A.
The ratio (B−A)/A was used as an estimate of the sensitivity of the phase imaging
system and is referred to in the text as the phase-contrast enhancement (PCE).
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2.2.6 Calibration of the angle of incidence

The phase and transmission image of the plexiglass plate both depend on the angle
with which the radiation is incident on it. This results in a high sensitivity of
the phase-contrast enhancement to the angle of incidence. For that reason, each
experiment consists of a series of images taken for a range of object orientations
of approximately ±3◦ around zero rotation angle ( Figure 2.1). A variable angular
step size in the range from 0.1◦ to 1◦ was used to provide denser sampling around
0◦ orientation. Considering the fact that the projected phase map of a thin plate
must be symmetrical relative to the rotation angle 0◦, the correction for a small
misalignment in the object orientation could be done after the data acquisition.

2.3 Model

The MIRRORCLE-6X is a highly polychromatic X-ray source (spectrum 0.001 −
6MeV )[42] which requires an accurate account for polychromaticity during the anal-
ysis of the imaging process. The corresponding numerical model, outlined below,
represents the three main stages of the image formation, namely: interaction of the
polychromatic X-ray field with the object, propagation of the electromagnetic field
to the X-ray detector, and the model of the detection process based on the esti-
mated spatial resolution and the spectral characteristics of the X-ray detector and
the X-ray source.

2.3.1 Object interaction and field propagation

The interaction of the X-ray field with the specimen is straightforward in the current
experiment. The plexiglass plate satisfies the condition of the thin-body approxi-
mation [88], therefore the field interaction is described by the transmission function
(Equation 2.1):

T (x) = exp (−µ (x)/ 2) · exp (iφ (x)) , (2.1)

where µ (x) is a linear attenuation map of the specimen and φ (x) is a phase map.
The linear attenuation map µ (x) is calculated using the mass attenuation coefficients
from the NIST database [18] and the known projected mass of the specimen. For
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the X-ray energies above the absorption edges of the material (� 1keV ) the phase
map can be very well approximated by [68]:

φ (x) = −λreNed (x) , (2.2)

where λ is the wavelength of the electromagnetic field, re the classical electron
density, Ne is the electron density of the material, and d (x) the projected thickness
map.

The propagation of each monochromatic component of the electromagnetic field
from the object plane to the detector plane is described by Fresnel diffraction. A
computationally efficient Fourier formulation of Fresnel diffraction can be written
as [89]:

ψE (Mx,R2) = 1
M
F−1exp

(
iλR2 |u|2

4πM

)
FT (x), (2.3)

where F and F−1 represent respectively the forward and inverse Fourier transforms
and u denotes the spatial frequency. In this equation the geometric magnification
M of the system is accounted for. The constant phase pre-factor [90] is dropped for
the sake of readability as it is irrelevant for the calculation of the intensity image.

The total intensity of the field at the detector plane Id (x) will be calculated as a
superposition of all propagated monochromatic components:

Id (x) =
�
|ψE (x,R2)|2 S (E)E. , (2.4)

S (E)where is the effective intensity spectrum of the imaging system.

Due to the finite size of the incoherent X-ray source, the detected image is formed
as a superposition of intensity fields Id (x) produced by each point of the X-ray
source independently. Considering that the source size is negligible relatively to
the propagation length of the field, the result of the superposition is described as
a convolution of the point-source intensity field Id (x) with a point-spread-function
PSFsrc (x) representing the source size and shape [88] :

I (x) = PSFsrc

(
x

M − 1

)
∗ PSFdet (x) ∗ Id (x) , (2.5)

where I (x) is the image recorded at the detector plane, PSFdet (x) is a point-spread-
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function of the X-ray detector. The factor M − 1 is introduced to account for
magnification of the projected source size at the detector plane.

Expression (Equation 2.5) completes the model described above, which allows us to
simulate the in-line X-PCI image of a known “2-D specimen”. The characteristics
of the imaging system are included in the model as the effective spectrum S (E), the
imaging geometry as expressed by R1 and R2, and the source and detector point-
spread-functions PSFsrc (x), PSFdet (x). Accurate estimation of these functions is
absolutely crucial for the modeling process and will be described in two following
subsections.

2.3.2 System spectral characteristics. Detector efficiency.

The first step in modeling the imaging process is to estimate the effective spectrum
of the system. The effective spectrum S (E) is a product of the emission spectrum
of the MIRRORCLE-6X Se (E), the energy dependent transmission of the imaging
system Ts (E) and the energy absorption efficiency EAE (E) of the detector:

S (E) = Se (E)Ts (E)EAE (E) . (2.6)

The emission spectrum Se (E) of the MIRRORCLE-6X was calculated using Monte-
Carlo simulations based on the GEANT4 toolbox [91] (Figure 2.3). The energy
dependent transmission of the system Ts (E) is defined as the fraction of X-rays of a
certain energy emitted by the source which reach the detector plane in the absence
of an object. In the calculation of the system transmission Ts (E), the absorption of
X-rays by the beryllium exit window of the MIRRORCLE and the air between the
exit window and the detector is accounted for.

The energy absorption efficiency EAE (E) of the detector is defined as a fraction
of X-ray intensity of a certain energy which is converted to a detector signal. It is
given by [92]:

EAE (E) =
(
µen (E)
µ (E)

)(
1− e−µ(E)d

)
, (2.7)

where 1− e−µ(E)d is the quantum detection efficiency (QDE), i.e. the fraction of X-
ray photons which interact with the scintillator, d the thickness of the scintillation
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Figure 2.3: Spectra of tungsten spheres of 10µm, 20µm and 40µm in diameter were
computed using GEANT4 package. A monochromatic, spatially uniform electron
beam with a total energy of 6MeV was assumed in the calculation. Estimation of
the effective spectrum was done considering computed efficiency of the BaFBr:Eu
detector and the transmission through five meters of air.

layer of the detector, and µ (E) the linear attenuation coefficient of BaFBr. The
energy-absorption coefficient divided by the linear attenuation coefficient

(
µen(E)
µ(E)

)
is

the average fraction of energy transferred in each interaction with the scintillation
layer. Both coefficients µen (E) and µ (E) are well documented [93]. The effective
spectrum of the five meter long imaging system with the 40µm tungsten target and
the BaFBr:Eu detector is depicted in Figure 2.3b.

Calculation shows that the total intensity of the target is not linearly dependent on
the volume. The photon fluxes of the 40µm and 20µm tungsten spheres were found
to be respectively 26.2 and 4.5 times higher than that of the 10µm target. This can
be explained by self-absorption in the target. The same phenomenon contributes to
beam hardening, taking place in the 20− 40KeV regime, when the bigger target is
used (Figure 2.3a). Such hardening of the emitted radiation lowers the sensitivity of
the PCI system because the magnitude of the observed phase effect is proportional
to λ2 as can be seen from (Equation 2.3) and (Equation 2.4). On the other hand,
high energy radiation might be more suitable because of the higher transmission
through a particular object of interest.
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2.3 Model

It is apparent, therefore, that target size is an important characteristic of the X-ray
source, which influences the sensitivity of the system to the phase effect, defines
the source point-spread-function PSFsrc, and determines the total brightness of the
system [94]. The configuration of the target can be optimized using Monte-Carlo
simulations considering the characteristics of the complete imaging system in each
particular case.
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Figure 2.4: A schematic representation of the compound X-ray target (in the plane
perpendicular to the optical axis). A small tungsten target is suspended in a
droplet of epoxy on a thin carbon filament. There is a small misalignment angle
γ between the filament and the direction of the plexiglass edge (vertical dashed
line). A significant length of the filament is exposed to an electron beam.

2.3.3 Compound target model: spectrum

The results of the Monte-Carlo simulations for the spectrum of the X-ray source,
based on tungsten spherical targets (Figure 2.3a), correspond well with the mea-
surements of the MIRRORCLE-6X brightness [77]. However, we have found that
the so called compound target model of the X-ray source leads to a consistent in-
terpretation of the phase-contrast data that was obtained in our experiments.

It is known that in the MIRRORCLE-6X the tungsten target is suspended in a
small droplet of epoxy attached to a thin carbon filament of 7.6µm in diameter.
The whole construction is exposed to an electron beam of approximately ∼ 1mm in
diameter (Figure 2.4).

It was assumed that the interaction between the spherical tungsten target, the epoxy
droplet and the carbon filament is negligible during the X-ray production. Spectra
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of the compound target model were calculated as a superposition of independently
simulated spectra of the source components. Calculations were made considering
spherical tungsten targets of 10µm, 20µm and 40µm, a 70µm sphere of epoxy, and
a carbon cylinder of 7.6µm in diameter exposed to an electron beam with Gaussian
profile and a FWHM of 1mm.

Monte-Carlo simulations show that the epoxy droplet and the carbon filament con-
tribute a comparable or even larger fraction to the emission spectrum as the small
tungsten target (Figure 2.5a, Figure 2.5d, Figure 2.5g). The fraction of the effective
spectrum that is produced by the tungsten sphere is 33% for a 10µm target, 62%
and 89% for respectively a 20µm and a 40µm target. This indicates that there is a
profound influence on the phase enhancement of the imaging system depending on
the tungsten target size.

2.3.4 Compound target model: source point-spread-function

The point-spread-function of the compound target model PSFsrc is determined as a
sum of the relatively isotropic cross section of the tungsten target embedded in the
epoxy droplet and the highly anisotropic profile of the carbon filament exposed to the
electron beam. In each experiment the edge and the filament are both vertically ori-
ented with a small unknown misalignment angle γ between them ( Figure 2.4). The
tungsten target is attached to the side of the filament and may also rotate around
it due to the torsion of the filament. These factors are defining the projection of the
X-ray source onto the image plane (and therefore the PSFsrc) in each measurement.
The design of the target forces us to introduce several fitting parameters into the
compound target model to find a consistent interpretation of the measured data. To
reduce the number of fitting parameters, it was decided to neglect the fraction of the
PSF resulting from the epoxy droplet. Effectively we attributed its contribution
to the emitted X-ray field to the small spherical target embedded in it. The first
parameter is a fraction f of the X-rays that are not produced in the tungsten target,
but in the carbon filament. As a result, the image observed with the detector is the
weighted sum of the image produced by the radiation from the target It and the
filament Iw:

I = (1− f) It + (f) Iw.
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Figure 2.5: Normalized spectral characteristics (dose per solid angle unit) of the
compound target components with 10µm (top), 20µm (middle) and 40µm (bot-
tom) tungsten sphere.

Images It and Iw will be distinct due to two principal phenomena. Firstly, the car-
bon filament and the target are emitting different X-ray spectra (see Figure 2.5),
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therefore the phase effects in images It and Iw are not exactly the same. Secondly,
the point-spread-functions of the target PSFsrc,t and the filament PSFsrc,w are dif-
ferent due to the shape of the targets. If we assume that the X-ray production is
homogeneous over the volume of the target and neglect absorption of X-rays inside
the target, the shape of its PSFsrc,t is equivalent to the projection of its volume.
Because the image of the homogeneous plexiglass plate can be considered as a one
dimensional edge profile, the point-spread-function is projected onto a line perpen-
dicular to the direction of the edge. We approximate the one-dimensional target
PSFsrc,t as a normalized projection of a sphere with radius Rt:

PSFsrc,t (x) =


3

4R3
t

(R2
t − x2) x < Rt

0 x ≥ Rt

The projected PSF of a cylindrical filament with radius Rf is likewise:

PSFcylinder (x) =


2

πR2
f

√
R2
f − x2 x < Rf

0 x ≥ Rf

Generally, there is a small angle γ between the direction of the filament and the edge
of the plexiglass plate (see Figure 2.4). This extends the PSFsrc,w by the projection
of the profile of theelectron beam along the filament onto a line perpendicular to the
edge. If we assume that the electron beam has a Gaussian-shaped intensity distribu-
tion along the filament with a FWHM of h, the projection of the beam PSFbeam is
also Gaussian-shaped with a FWHM of h sin γ. Therefore, the full PSFsrc,w of the
filament is:

PSFsrc,w (x) = PSFcylinder (x) ∗ PSFbeam (x, h sin γ) (2.8)

The mounting of the target on the side of the filament (seeFigure 2.4) causes a
potential misalignment of the centers of the filament and the sphere. This causes
an arbitrary spatial shift ∆x between the intensity images It and Iw.

The observed phase-contrast edge profile I (x), taking all described effects into ac-
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count, is given by:

I (x) = (1− f) PSFsrc,t

(
x

M − 1

)
∗ PSFdet (x) ∗ It (x+ [M − 1] ∆x) +

+ (f) PSFsrc,w

(
x

M − 1 , h sin γ
)
∗ PSFdet (x) ∗ Iw (x) (2.9)

2.4 Results

In the current paper we present the phase-contrast enhancement in four series of 43
measurements of a 1.95mm thick plexiglass plate.

As described in the subsection 2.2.3, each series of images is taken for a range of
edge orientations (~±3◦) relative to the direction of the X-ray beam. Examples of
the acquired profiles are depicted in the Figure 2.6(a,b and c). The figures show a
large discrepancy between the measured edge profiles and the results of simulations
based on a simple spherical target model.

Introduction of the compound target model, described in subsection 2.3.3, allows for
a very accurate simulation of the measured data, but it requires fitting of the param-
eters f , h · sin (γ), and ∆x that represent the misalignment between the orientation
of the plexiglass edge and the components of the X-ray source.

The source point-spread-function PSFsrc was estimated using Wiener deconvolution
[95] of the acquired images with the profile resulting from the model based on the
fitted parameters. It is shown in Figure 2.6(a, ,b and c) that the estimated PSFsrc
corresponds to the PSFsrc of a compound target model.

2.4.1 Stability of fitting

Results of fitting the compound model parameters to the data acquired in three
experimental data collection sets are presented in Figure 2.7(a, b and c). The sets
consist in total of 31 measurements taken in the orientations range ±3◦, with mag-
nificationM = 14.3, system length R1 +R2 = 5.41m, using a 10µm tungsten target.
A typical integration time was 600sec per image.
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(a) #137: Θ = 0.20° f = 0.78, ∆x = −16 µm, h sin γ = 73 µm

(b) #156: Θ = -0.90° f = 0.75, ∆x = −6 µm, h sin γ = 59 µm

(c) #159: Θ = -0.20° f = 0.81, ∆x = −24 µm, h sin γ = 87 µm

Figure 2.6: On the left: three profiles (crosses) measured at different angles of
incidence Θ with magnificationM = 14.3, system length R1+R2 = 5.41m, a 10µm
tungsten spherical target. Note the extra wiggle depicted with a small arrow in
(a) and (c). The dashed lines are the modeled results for an ideal spherical target
(f = 0) and the solid lines are the results for the compound target model with
the indicated parameters. Right: the total PSF of the imaging system (source
and detector contributions) estimated with a Wiener filter (crosses). The dashed
lines show the PSFsrc of the spherical target alone and the solid lines represent
the simulated total PSF of the imaging system using the fitted parameters for
the compound target model (Equation 2.8).
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A considerable variation of the parameters throughout the series is apparent, how-
ever, linear trends in their variation can be found when the experimental data is
divided into the three sessions in which the images were acquired (#131-141, 143-
157 and 158-162) (see Figure 2.7(a, b and c)). This may be explained by the two
resets of the setup that took place exactly after measurements #141 and #157 were
taken. A linear change in the parameters, that are describing the compound target,
may be explained by a drift of the suspended target during the measurement.

Such drift will of course not be relevant if the target PSFsrc is isotropic, which can
potentially be achieved by reduction of the carbon filament fraction that is exposed
to the electron beam in the MIRRORCLE-6X or by increasing the volume of the
spherical part of the target.

Figure 2.7(d) demonstrates that a reasonable match between the experimental val-
ues of the phase-contrast enhancement and the modeled values can be achieved using
only the average values of the fitted parameters. The compound target model shows
that the phase-contrast enhancement PCE of the current system is decreased in the
performed experiment by a factor of 2 to 5 compared to the system with the same
geometry but using an ideal 10µm spherical tungsten target.

Another illustration of the results obtained with the compound target model is given
in Figure 2.8. The experimental series are acquired with magnification M = 12.8,
system length R1 +R2 = 5.31m, and a 10µm, 20µm and 40µm tungsten target. The
compound target model uses values for f obtained in Monte-Carlo simulations of
the X-ray emission by the target components (subsection 2.3.3) and the other two
parameters (∆x,h sin γ) are found by least-squares fitting.

The predicted PCE based on an ideal spherical target is too large for the small
targets by approximately a factor of 2 compared to the experimental data (see
Figure 2.8). The results of the compound target model, on the other hand, are very
close to the experimental data. They do not only reproduce a generally lower PCE in
all three experiments, but also indicate that the PCE may be higher with a larger
target depending on the angle of incidence.

Namely, the 40µm tungsten target dominates the other emitting components of the
MIRRORCLE-6X (providing 89% of radiation according to the Monte-Carlo simu-
lations). That is why it can produce a better performance compared to the smaller
targets due to an effectively sharper point-spread-function. This also explains why
the experiment that involves the bigger target is less influenced by the anisotropy
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of the MIRRORCLE-6X source (see Figure 2.8).
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Figure 2.7: (a, b, c)The result from fitting the parameters of the compound target
model to three sets of measurements. The solid lines indicate trends in the data
over time per measurement series. (d) The measured (crosses and circles) and
modeled (lines) phase-contrast enhancement as a function of angle of incidence.
The crosses indicate measurements done at negative angles of incidence. The
solid line is the result for f = 0 and the dashed lines are the results for two
typical sets of values from (a), (b) and (c). Measurements done with M = 14.3,
R1 +R2 = 5.41m, and a 10µm tungsten spherical target.
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2.4.2 Phase-contrast enhancement of MIRRORCLE-6X

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

P
h
a
se
−
co
n
tr
a
st
 e
n
h
a
n
ce
m
e
n
t

 

 
, o: 10 µm, f = 0

, x: 20 µm, f = 0

, +: 40 µm, f = 0

Angle of incidence (degree)
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

 

 
, o: 10 µm, f = 0.77, h sin(γ) = 47 µm

, x: 20 µm, f = 0.38, h sin(γ) = 115 µm

, +: 40 µm, f = 0.11, h sin(γ) = 115 µm

Angle of incidence (degree)
P
h
a
se
−
co
n
tr
a
st
 e
n
h
a
n
ce
m
e
n
t

(a) Ideal spherical target mode (b) Compound target model

Figure 2.8: The phase-contrast enhancement for three series measured with spher-
ical tungsten targets of 10, 20 and 40µm in diameter (denoted respectively by
circles, crosses, and plus-signs). Measurements were done using the same setup
geometry M = 12.8 and R1 + R2 = 5.31m. (a) demonstrates the discrepancy
between the measured data and calculated values (solid, dash, point-line) using
an ideal spherical target and (b) shows the correspondence of the measured data
and calculated values using the compound target model.

The increase of contrast at a sharp plexiglass edge due to the phase-contrast effect of
the MIRRORCLE-6X was observed to be between 100% and 200% in the current im-
plementation. However, an accurate measurement of the phase-contrast enhancement
was found to be particularly unstable. The instability can be attributed to the
anisotropy in the resolution of the system caused by the radiation emitted from the
various components comprising the X-Ray source.

According to calculations, if no (or almost no) radiation is produced by the compo-
nents other than the target, the current system based on the MIRRORCLE-6X will
yield a PCE of 400% to 500% (see Figure 2.7(d)). That could be potentially achieved
using constructions made of carbon nanomaterials. Effective reduction of the X-Ray
source size below 30− 40µm can in principle be achieved without any modifications
in the MIRRORCLE-6X design. A system of double bend Laue monochromators
[96] would be required for patient imaging to select the appropriate X-ray spectrum
and to limit the source size. A choice of X-ray detector with a higher resolution
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(. 50µm) will permit using a geometry with lower magnification which yields even
higher levels of PCE.

Using the conversion factor by Yamada [79] to estimate the brightness from the
measured radiation dose shows that the MIRRORCLE-6X should be capable of
yielding the brightness on the order of 1010 − 1011photons/(s ·mrad2 · 0.1%band),
which means that monochromatized beams with fluxes ranging from 108photons/(s ·
mrad2) to 1011photons/(s ·mrad2) should be possible, depending on the bandwidth
of the monochromator.

Other X-PCI techniques than in-line X-PCI can be potentially designed with the
MIRRORCLE-type sources. For instance, gratings-based X-PCI or aperture-based
X-PCI implementations seem to be promising since they can tolerate a significantly
larger source size. A transition to a digital detector and addition of the monochro-
mator is of course inevitable for these techniques.

2.5 Conclusions

The performance of an X-PCI prototype based on the MIRRORCLE-6X X-ray
source was characterized using the edge response of the system. The phase-contrast
enhancement factor was measured in a series of experiments as the ratio between
the phase and absorption contrast produced by the plexiglass plate. It was found to
be particularly sensitive to the edge orientation due to the anisotropy of the X-ray
source point-spread-function. The observed PCE values were found to be between
100% and 200% in different configurations of the system.

The role of the X-ray source target size was investigated using Monte-Carlo sim-
ulations using the GEANT4 software package. Calculations show that the target
size has a considerable influence on the low-energy part of the emission spectrum
(10 − 40KeV of a total 0.001 ∼ 5.5MeV ). Even more important, the components
used for mounting of the spherical target in the present design may emit up to 70%
of the total radiation in case of a 10µm spherical tungsten target, down to 10% for
the 40µm targets.

As a result, the same or higher performance in terms of PCE values was observed in
experiments when a 40µm target was used instead of 10µm or 20µm targets. The
emission produced by the components of the mounting cannot be fully avoided in
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the current implementation of the system due to the limited focusing of the electron
beam in the synchrotron ring. This factor determined a minimal diameter of the
tungsten target that could be effectively used in the MIRROCLE-6X to 30− 40µm.

Calculations demonstrate that after achieving a significant reduction of the radiation
emitted by the target mounting, the PCE levels of the MIRRORCLE-6X can be
improved by a factor of 2 to 5 by allowing to use smaller targets.
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3 Non-destructive investigation of
3D microstructure of steel

Abstract1

This work presents the development of a non-destructive imaging technique for the
investigation of the microstructure of cementite grains embedded in a ferrite matrix
of medium-carbon steel. We show that non-destructive, in-line X-ray phase-contrast
tomography (PCT) can be used to study the three-dimensional morphology of indi-
vidual cementite particles in steel with a spatial resolution of approximately 1.5 µm
in a sample volume of 600×400×250 µm3. The smallest detectable cementite grains
are 5 µm in size. A second imaging technique, X-ray diffraction-contrast tomography
(DCT), was employed to obtain information about the shapes and crystallographic
orientations of the distinct ferrite grains surrounding the cementite structures. The
results of PCT correspond very well to optical microscopy in combination with se-
rial sectioning. We estimate the temporal resolution of PCT for in situ studies of
cementite to be 30 min.

3.1 Introduction

The morphology of cementite in steel has a large effect on the mechanical properties
of steel [98], which is the reason for world-wide studies into the three-dimensional
morphology of cementite [99, 100, 101, 102, 103]. The morphology of cementite in
steel can be divided into three main categories: 1) large (few to tens of micrometers)

1This work is published in: [97] A. Kostenko, H. Sharma, E. G. Dere, A. King, W. Ludwig,
W. van Oel, S. Stallinga, L. J. van Vliet and S. E. Offerman, “Three-dimensional morphology
of cementite in steel studied by X-ray phase-contrast tomography,” Scripta Materialia, 67,
261–264 (2012).
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sphere-like particles of cementite in a matrix of ferrite or austenite, 2) lamella of ce-
mentite in pearlite, and 3) carbides (nanometer to submicron particles) of cementite
in bainite and in tempered martensite. Spheroidization of cementite is an example
of an important industrial process, e.g. in the production of rolling bearings, in
which the lamella of cementite in pearlite are transformed to spheres of cementite
with the aim to facilitate machining, and warm- and cold-forming operations of the
steel.

Studying the evolution of the morphology of the cementite in 3D during spheroidiza-
tion is challenging, because the current state-of-the-art techniques require destruc-
tive serial sectioning [99, 100, 101, 102, 103], which has the intrinsic limitation that
the evolution of individual cementite particles cannot be studied. Only the aver-
age growth behaviour of the cementite particles can be studied by serial-sectioning.
Moreover, the holes present in naturally grown cementite lamella also need to be
investigated, because the work of Wang [99] has shown that the intrinsic holes play
an important role in the initiation and development of pearlite spheroidization.

For conventional x-ray tomography techniques based on attenuation-contrast, the
density difference of 3% between cementite and ferrite is too small to obtain contrast.
The aim of this research is to determine the feasibility of studying the 3D morphology
of cementite in steel by using x-ray phase-constrast tomography, which, in case
successful, will open the door to the study of the evolution of the morphology of
individual cementite particles in 3D during processing of steel.

3.2 Materials and Methods

3.2.1 Experimental setup

The specimens in our study were manufactured from steel with the following compo-
sition (in wt.%): 0.6 carbon, 0.6 manganese, and 2.8 copper. The steel sample was
annealed in vacuum of 10−5 mbar at constant temperature of 700ºC for times varying
between 1 and 70 hours. Annealing was followed by cooling to room temperature at
a rate of 2ºC/min. Cementite structures corresponding to different annealing times
were studied using light microscopy and serial sectioning with a step size of approxi-
mately 2.5 µm. Figure 3.1 shows that cementite grains vary in size between one and
tens of micrometers depending on the duration of the treatment. The specimens for
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Figure 3.1: Light microscopy of the cementite-ferrite structure in steel specimens
annealed at a temperature of 700ºC for a) 1, b) 10, c) 20, and d) 70 hours.

the PCT-measurements are 200 to 400 µm thick.

The phase-contrast imaging experiments were performed at the materials science
beamline ID11 of the European Synchrotron Radiation Facility (ESRF) in Grenoble
(France). Beamline ID11 is based on an undulator X-ray source that produces a
quasi-parallel beam with a source size of FWHM = 57x10 µm2 (HxV). The X-ray
beam is monochromatized to an x-ray energy of 40 keV using a Laue-Laue crystal
with an energy bandwidth 4E/E = 10−4. We used the first experimental hutch
that allows a source-to-detector distance of 48 m which corresponds to a spatial
coherence length of approximately 9x50 µm2 (HxV). A FReLoN 2K CCD detector
was coupled to a 30 µm thick scintillator via a 20x magnification objective lens. The
resulting spatial resolution was estimated from the acquired images by estimating
its point spread function; it resembles a Gaussian with a FWHM of approximately
1.4 µm. For each tomographic acquisition series 1200 projections were recorded
uniformly spaced over the full 360º angular range. The projections were acquired in
the format of 1024x1024 with a pixel size of 0.75 µm at three different sample-to-
detector distances: 3 mm, 68 mm, and 208 mm.
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3.2.2 Pre-processing and image reconstruction

Phase-contrast imaging is based on Fresnel diffraction of light at the inhomogeneities
of the electron density within the specimen [49]. Ferrite and cementite have different
electron densities, mainly due to the high carbon content in the cementite. As a
result X-rays are diffracted at the interfaces between the cementite and ferrite. If the
specimen is illuminated with a monochromatic coherent beam, Fresnel diffraction
rings can be observed around the boundaries of the cementite grains when a detector
is placed at a sufficiently large distance behind the specimen. The recorded image
that contains such diffraction signal can be used to identify cementite structures (see
Figure 3.2). Furthermore, an electron-density map of the specimen can be calculated
using so-called phase-retrieval techniques [52, 54, 55, 104] followed by tomographic
reconstruction(see Figure 3.2).

All recorded images were pre-processed with a standard dark-field correction method
using a dark-field reference image acquired once per tomographic dataset. Slow
variations in the illumination of the specimen were corrected using reference flat-field
images acquired after every 100 projections, while rapid variations were corrected in
each projection using a flat-field that was estimated from the non-attenuated pixel
values aside the object.

A recorded phase-contrast image of the cementite is often contaminated by so called
extinction spots - areas on the image with low intensity due to diffraction of the
incoming X-ray beam on the atomic lattice of a ferrite grain. Each extinction spot
occurs only in those projections in which the orientation of the grain with respect to
the incoming beam corresponds to the Bragg diffraction angle. That property allows
us to significantly reduce the effect of extinction spots. The intensity variations
caused by the Bragg diffraction can by estimated by applying a high-pass filter to
the sinogram along the angular dimension and a low-pass filter along the spatial
dimensions. The estimated intensity of the extinction spots can be then subtracted
from the sinogram.
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Figure 3.2: A single slice of the tomographic reconstruction of the steel specimens
annealed for 20 hours (a, c) and 70 hours (b, d). The results (a) and (b) show
reconstructions based on raw phase-contrast data (no phase retrieval), and (c)
and (d) show electron density reconstructions based on phase retrieved images.

Misalignments between the projections in a sinogram reduce the quality of subse-
quent tomographic reconstruction. Such misalignments were estimated from the
acquired data and did not exceed roughly one micrometer throughout the complete
dataset. A procedure described in [105] was applied to the data in order to com-
pensate for the misalignments between the projections.

A linear approximation to Fresnel diffraction [45] yields the so called Mixed TIE-
CTF model (Transport of Intensity Equation - Contrast Transfer Function) for in-
line phase-contrast imaging. It is based on the assumption that the phase image of
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Figure 3.3: 3D rendering of the cementite structure in ferrite bulk. The total vol-
ume dimensions are 600x400x250 µm3. Rendering shows a highly interconnected
network of cementite particles.

the specimen ϕ(x) is sufficiently smooth:

|ϕ(x)− ϕ(x+ λRumax)| � 1, (3.1)

where λ is a wavelength of the monochromatic x-ray beam, R is an object-to-detector
distance and umax corresponds to the maximal spatial frequency contained in the
recorded phase image. This approximation breaks down around steel-to-air inter-
faces, including the outside boundaries and the pores of the specimen. It is, however,
valid for the ferrite-cementite interfaces and should provide a correct image of the
cementite grains away from the specimen boundaries. The observed image can be
described in Fourier space as a combination of an attenuation term and a phase
term:

F (IR) = cos(λRu2) · F (I0) + sin(λRu2) · F (I0ϕ), (3.2)

where F (IR) is the Fourier transform of the image observed at an object-to-detector
distance R using monochromatic light of wavelength λ, u represents the spatial
frequency, I0 is the attenuation image of the object at R = 0, and ϕ is the projected
phase image of the object at R = 0. At a distance R equal to zero, only the
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attenuation image of the object will be observed: F (IR) = F (I0). When the distance
R is large, the second term, which corresponds to the phase-contrast contribution,
will appear. Unfortunately, when the object-to-detector distance is increased, the
second term in Equation 3.2 only produces high contrast in a limited range of spatial
frequencies, namely when 0 < λRu2 < 1 . The second term will reduce to zero at
a set of spatial frequencies λRu2 = 0, 1, 2 . . . and is attenuated by an envelope as
result of the finite source size and a finite detector resolution. In practice, it is
often infeasible to reconstruct the image at spatial frequencies λRu2 > 1. The
later determines how much the phase-contrast can be enhanced by allowing a large
object-to-detector distance before the resolution will be compromised. The standard
solution to overcome the problems associated with the zero-crossings in the CTF is
to acquire each projection angle of the specimen at multiple distances. Each image
recorded at a certain distance R will contain an enhanced phase-contrast signal in a
particular frequency range. Together these images will contain the information over
a wide range of spatial frequencies. A complete tomographic acquisition in such
case will be composed from several sinograms, each of them recorded at a different
object-to-detector distance R. The phase image ϕ(x) can be reconstructed from the
recorded phase-contrast images using the following formula [51]:

F (ϕ) = C
∑
R F (IR) sin(λRu2)− A∑R F (IR) cos(λRu2)

2BC − 2A2 + ε
, (3.3)

where A = ∑
R sin(λRu2) cos(λRu2), B = ∑

R sin(λRu2)2, C = ∑
R cos(λRu2)2 and

ε is a small constant introduced to avoid division by zero. Such an approach requires
a very large number of images per dataset which increases the total acquisition time
and may introduce problems with inter-sinogram alignment. Another downside of
a multiple distance approach is that the phase term in Equation 3.2 remains zero
at spatial frequency u = 0 irrespective of the object-to-detector distance R. The
latter means that the phase image can never be reconstructed at very low spatial
frequencies.

An alternative approach to Mixed TIE-CTF phase retrieval was proposed for ho-
mogeneous specimens in [52] and modified in [54, 104]. We refer to it as the phase-
attenuation duality approach. The underlying assumption of this approach is that
the phase image ϕ is highly correlated with the attenuation image I0. That allows
replacing two unknown images ϕ and I0 from the right hand side of (2) with a single
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Figure 3.4: Rendering of a single interconnected cementite structure, where (b) is
a cross-section made in X-Y plane in the middle of the grain, (c) shows the cor-
responding plane in the phase-contrast data and (d) is the corresponding optical
image obtained from the serial sectioning of the specimen.

unknown image I0 and rewrite the phase-contrast model in a following way:

F (IR) = (cos(λRu2) + 2α · sin(λRu2)) · F (I0), (3.4)

where α is a constant that depends on the composition of the specimen. It quan-
tifies the ratio between attenuation and phase effects. Reconstruction based on
Equation 3.4 allows retrieving an image of the specimen from a single recorded im-
age IR. Unfortunately, similar to Equation 3.2, it is impossible to reconstruct the
image for spatial frequencies at which the right hand side of the equation is zero. In
order to overcome that, a solution similar to Equation 3.3 can be used. By combin-
ing Equation 3.3 and Equation 3.4 we can reconstruct the image of a homogeneous
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specimen over a wide frequency range including the low frequencies. The resulting
phase-attenuation formula can be written as:

F (I0) =
∑
RARF (IR)∑

RA
2
R

, AR = (cos(λRu2) + 2α · sin(λRu2)). (3.5)

Here the number of images that have to be recorded per projection angle can be
selected depending on the desired frequency bandwidth of the reconstruction.

Results and conclusions

A standard tomographic reconstruction - Filtered Back Projection (FBP) - can be
performed with or without applying phase retrieval to the recorded phase-contrast
images as shown in Figure 3.2(a,b) and Figure 3.2(c,d) show the results of the to-
mographic reconstruction performed after the phase retrieval calculation based on
Equation 3.5. It is interpreted as an electron density map of the specimen and
can, for example, be used to render three-dimensional configuration of the ce-
mentite grains (Figure 3.4). It is also possible to apply tomographic reconstruc-
tion directly to the recorded phase-contrast data skipping the phase-retrieval step
(Figure 3.2(a,c)). Such calculation results in an image that does not have a strict
physical meaning but can also be suitable for analysis of the specimen’s structure.
Visually the FBP of the raw projections yields more contrast than the FBP of the
retrieved phase images, which often may make it easier to observe small low-contrast
structures.

Tomographic reconstructions from two different specimens are compared in Figure 3.2.
The specimen that was annealed for 20 hours contains small 5-10 µm cementite
grains that are barely detectable in our PCT data (Figure 3.2(a,b)) as a result of
very weak phase-contrast. The specimen that was annealed for 70 hours contains
large grains of cementite (~50 µm) that are easy to detect (Figure 3.2(b,d)). Both
specimens contain large number of spherical pores with diameters in the range 1-
4µm. Pores of this size are easily detectable in phase-contrast regime. In fact, they
produce such a high contrast that it usually leads to so called streak artefacts in
tomographic reconstruction.

Using a tomographic reconstruction of the electron density of the 70 hours specimen
(Figure 3.2(d)) we could render a three-dimensional configuration of the cementite
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grains (Figure 3.3). The average volume of interconnected cementite structures in
the 70 hours sample is approximately 2·104 µm3 which corresponds to a spherical
cementite particle with the radius of 17 µm. The particles have very irregular ge-
ometries (Figure 3.4) which most likely correlate with the configuration of the grain
boundaries of the surrounding ferrite grains, due to incomplete spheroidization. It is
evident from the optical serial sectioning (Figure 3.1, Figure 3.4(d)) that the large
cementite grains tend to form close to the ferrite grain boundaries. Unfortunately
PCT does not provide information on the ferrite structure. In order to investigate
how the configuration of the cementite grains is related to the surrounding ferrite,
diffraction based technique similar to the Diffraction-Contrast Tomography (DCT)
has to be employed along with the phase-contrast imaging. Currently, the diffraction
data that was acquired by us for the sample used in PCT experiment yielded spatial
resolution that was not sufficient for a conclusive analysis [105] (see the Appendix).
We plan to combine higher resolution DCT acquisition with the improved contrast
PCT data in a follow-up study.

Considering the experimental technique that was used in the current investigation,
it is only possible to reliably detect large cementite grains that occur after very
long annealing times. Information on the interface mobility and preferred growth
orientation of the large cementite grains can be obtained in a time-dependent PCT
experiment (with a resolution of 1.5 micrometers). It is, however, desirable to de-
velop a technique suitable for observations of smaller cementite grains that form
after shorter annealing times and ultimately cementite grains during the nucleation
process. We believe that the parameters of the current PCT acquisition protocol can
be relatively easy adjusted in order improve the sensitivity of the method by a large
factor. The most important experimental parameters in PCT are the energy of the
X-ray beam, the object-to-detector distance, the resolution of the detector, and the
spatial coherency of the X-ray source. We expect that the resolution and the spatial
coherency of the X-ray source can be improved by approximately a factor of 2 by
adjusting parameters of the current experimental setup. If the projected thickness
of the specimen is not exceeding 100 µm, the X-ray energy can be reduced from 40
KeV down to 30 KeV. Considering the properties of the propagation model (2) and
the properties of materials, the magnitude of the observed phase-contrast effect is
roughly inverse proportional to the third power of the X-rays energy. That means
that the sensitivity of the method can be improved by a factor of 4 by decreas-
ing the X-ray energy. Using the phase-attenuation duality approach it is possible
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to perform tomographic reconstructions from the PCT data recorded at a single
object-to-detector distance. That will most likely limit the acquisition time of a
full tomographic dataset to less than 30 minutes at the ESRF or similar large-scale
synchrotron radiation facility.

Based on the aforementioned analysis, we have shown that a state-of-the-art PCT
approach is suitable for the detection of the cementite structures with sizes down
to a few microns. We show that PCT can be used for the non-destructive study
of the 3D-morphology of individual cementite particles in steel with a spatial res-
olution of approximately 1.5 µm in a sample volume of at least 600x400x250 µm3.
The PCT results correspond very well to optical microscopy in combination with
serial sectioning. We demonstrate that PCT is suitable for the in-situ study of the
evolution of the morphology of the cementite of individual cementite particles in
3D during processing of steel with an estimated temporal resolution of 30 minutes.
This allows in-situ experiments aimed at investigating the cementite grain growth
rates, the cementite morphology evolution, and the mobility of the ferrite-cementite
interface in steel at elevated temperatures.

Appendix: Diffraction Contrast Tomography2

The combination of two complementary techniques: X-ray PCT and X-ray DCT, can
be used to study the microstructure of cementite grains in a ferrite matrix. A single
imaging beamline with sufficient spatial coherence and a suitable X-ray detector
can be utilized for both PCT and DCT without significant changes to the beamline
geometry or the components. When the beamline is switched from PCT to DCT
mode only the detector has to be realigned to allow for the desired angular resolution
and a sufficiently large field of view. A suitable scan series has to be recorded using
a 360° scan protocol, which permits a reconstruction based on Friedel pair matching
[45]. The structure of the ferrite grains cannot be reconstructed using phase-contrast
imaging techniques since there is no variation of density or composition between
the grains. Instead, the Bragg diffraction of X-rays on the ferrite lattice must be
exploited. In order to perform a time-resolved study, the imaging techniques must

2A. Kostenko, H. Sharma, E. G. Dere, A. King, W. Ludwig, W. van Oel, S. E. Offerman, S.
Stallinga and L. J. van Vliet , “In-line x-ray phase-contrast tomography and diffraction-contrast
tomography study of the ferrite-cementite microstructure in steel,” AIP Conference Proceedings
63, 1437 (2012).
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(a) (b)

Figure 3.5: The results of the PCT and DCT reconstructions overlayed with the
optical images of the corresponding section of the specimen. (a) PCT reconstruc-
tion (red channel) overlayed with optical image (green channel). (b) The results
of the DCT grain tracking (color labels) overlayed with the optical image (gray).

allow for relatively short acquisition times (on the order of 1 hour or less) for a
complete 3D volume. That requirement can be satisfied using X-ray diffraction-
contrast tomography.

The diffraction-contrast images are recorded at 9.5 mm object-to-detector distance
using a full CCD (2048x2048) format with optical magnification corresponding to
a 3.75 µm sampling pitch. The DCT acquisition was done separately for five sub-
sections of the complete volume of the specimen in order to reduce the complexity
of the reconstruction. The data was processed using the grain tracking algorithm
proposed by Ludwig [45]. The algorithm is based on the assumption that the investi-
gated material is composed of crystalline grains that will diffract radiation according
to the Bragg law depending on their crystalline orientation. Each grain is assumed
to be an ideal single crystal that produces a diffraction spot that corresponds to the
geometrical projection of the grain in that direction. This method permits volumet-
ric reconstruction of the granular structure of the specimen based on the full field
images of the diffraction patterns acquired in 360º view range. Unfortunately, the
method is unable to reconstruct information about the local orientation gradients
inside single grains. As a result of deformations inside individual grains such gradi-
ents are present in the specimen under study causing the reconstruction approach to
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become inaccurate. The result of DCT reconstruction based on the grain tracking
approach is shown in Figure 3.5. Different grains reconstructed from DCT data are
colour-coded and overlaid with the images obtained from optical microscopy. Com-
parison with the optical data clearly demonstrates that the current DCT approach
fails inside the regions that most likely have a significant local gradient of crystalline
orientation. These erroneous regions seem to occur around the grain boundaries and
in those parts of the volume where many large cementite grains are found.

From Figure 3.5 it can be estimated that the reconstructed grain volumes cover
approximately 80% of the actual ferrite grain volume. The grain boundaries are
determined within 15-20 microns accuracy. A conventionally used morphological
dilation algorithm can be applied to the reconstructed DCT data to ’fill-in’ the
gaps, does not improve the image quality significantly as the regions where the
reconstruction fails are to large.
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Abstract1

State-of-the-art techniques for phase retrieval in propagation based X-ray phase-
contrast imaging are aiming to solve an underdetermined linear system of equations.
They commonly employ Tikhonov regularization − an L2-norm regularized decon-
volution scheme − despite some of its limitations. We present a novel approach
to phase retrieval based on Total Variation (TV) minimization. We incorporated
TV minimization for deconvolution in phase retrieval using a variety of the most
common linear phase-contrast models. The results of our TV minimization was com-
pared with Tikhonov regularized deconvolution on simulated as well as experimental
data. The presented method was shown to deliver improved accuracy in reconstruc-
tions based on a single distance as well as multiple distance phase-contrast images
corrupted by noise and hampered by errors due to nonlinear imaging effects.

4.1 Introduction

Recently, the field of X-ray phase-contrast imaging (PCI) has been growing rapidly.
X-ray PCI found applications in materials science, ranging from investigating the
microstructure of carbon-based materials [3, 4] to in-situ measurements of dynamic
processes taking place in metal alloys and semiconductors [5, 6, 97]. X-ray PCI is also
entering the field of pre-clinical bio-medical research, namely, small animal imaging
and various ex-vivo/in-vitro studies [7, 13, 14, 15, 16, 17]. The increasing availability
of the X-ray PCI techniques over the last years was stimulated by advances in
instrumentation and phase retrieval algorithms.

1This work is published in: [106] A. Kostenko, K. J. Batenburg, H. Suhonen, S. E. Offerman and
L. J. van Vliet, “Phase retrieval in in-line x-ray phase contrast imaging based on total variation
minimization,” Optics Express, 21, 710–723 (2013).
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The scope of our current investigation lays within phase retrieval for propagation-
based X-ray PCI. For more than a decade various algorithms were developed to
permit accurate reconstruction of the specimen’s phase and attenuation images from
phase-contrast data acquired using the propagation-based approach [47]. A major
effort was aimed at the development of linear approximations to the image formation
of PCI that would permit a stable solution of the resulting inverse problem [47, 49,
50, 51, 107]. Using these approximations, the phase and attenuation images of
the specimen can be calculated from a series of phase-contrast images acquired at
different propagation distances. To allow phase retrieval from a single phase-contrast
image, methods based on prior information about the specimen’s composition were
developed [52, 53, 54]. They are referred to as the so called phase-attenuation duality
models.

In all linear phase retrieval models the accuracy of the reconstruction is a function
of spatial frequency. Depending on the acquisition conditions, the signal-to-noise
ratio (SNR), and the fitness of the linear approximation, the phase image of the
specimen will be irrecoverable within a particular set of spatial frequencies [55, 56].
In the case of multi-distance phase retrieval [51] this can lead to large errors at
low spatial frequencies while in single-distance approaches [52, 53, 54] artifacts are
produced at middle and high spatial frequencies. In order to avoid large errors in
the reconstructed images, most of the phase retrieval approaches rely on a so called
L2-norm based regularization also known as Tikhonov regularization. When L2
regularization is used, the solution that has the minimum L2-norm (i.e. Euclidean
norm) is promoted. This leads to a suppression of spatial frequencies that are ill-
determined by the phase retrieval model or heavily corrupted by noise. Such a
solution may not be optimal, especially when it results in a strong suppression of a
large band of low frequencies in multi-distance retrieval methods.

Another regularization approach that is currently used in an increasing number of
image reconstruction applications is called Total Variation (TV) minimization. It
was initially developed for image denoising [58] and recently been introduced in such
fields as deblurring, super-resolution, inpainting and tomography [61, 62, 63, 64].
The idea underlying TV minimization is to promote a solution that has the sparsest
gradient. It was theoretically proven [65] that under certain conditions TV mini-
mization allows exact reconstruction of signals with a sparse gradient from highly
incomplete sets of observations. In cases where the gradient of the reconstructed
image is not exactly sparse, TV minimization is nevertheless preferred to L2 regu-
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larization in many applications [108].

In this paper we introduce a TV minimization approach for solving the inverse
problem of phase retrieval in propagation-based X-ray PCI based on various linear
models. Any implementation of TV minimization can be chosen from a wide range of
algorithms [63]. Here we will present only results acquired with an algorithm based
on the so called Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [109].
The original implementation of the algorithm was modified to include frequency
weighting into the minimization scheme. Frequency weighting permits to account
for the frequency-dependent nature of the signal-to-noise ratio and is shown to have
a significant influence on the accuracy of the phase retrieval.

4.2 Materials and methods

In the following subsections we will describe how the phase retrieval problem of
phase retrieval can be solved using iterative least-squares minimization and TV-
minimization. In order to do so, we will introduce a matrix formalism which is
uncommon in the field of phase retrieval. To keep our description compact we will
refer the reader to the paper of M. Langer [51] for details regarding the theoretical
background of X-ray phase retrieval algorithms.

4.2.1 Matrix formalism for phase propagation model

It is essential for the purpose of this paper that the convolution integral can be
expressed using matrix formalism. Let us, for instance, define the propagated X-ray
wavefront as a matrix product. Let A denote the set of square integrable functions
R2 → C with bounded support. Within the paraxial approximation, the X-ray
field HD ∈ A propagated to a distance D from the object can be expressed as
the convolution (?) of the unpropagated field T ∈ A with the Fresnel propagator
PD ∈ A:

HD = PD ? T. (4.1)
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If we denote the Fourier domain representations of T , PD, and HD by T̃ , P̃D, and
H̃D, respectively, we find that

H̃D(f) = P̃D(f) · T̃ (f), (4.2)

where f denotes the spatial frequency. We now discretize the Fourier domain, rep-
resenting a spectrum by its values in a discrete set {f1, . . . , fk} of basis elements

t̃ =


T̃ (f1)

...
T̃ (fk)

 and P̃D =


P̃D(f1) ∅

P̃D(f2)
. . .

∅ P̃D(fk)

 . (4.3)

where P̃D is a diagonal matrix containing a discrete representation of the propagator
P̃D(fk) and t̃ is a vector that contains a discrete representation of T̃ (fk). Conse-
quently, a discretized representation h̃D of the propagated field H̃D can be defined
in frequency domain:

h̃D = P̃D · t̃, (4.4)

where the symbol (·) denotes the matrix-vector product. If we introduce a vector
t corresponding to the discrete representation of the unpropagated field T , it is
possible to construct a Toeplitz matrix PD such that the discretized propagated
field hD can be expressed in the spatial domain:

hD = PD · t, (4.5)

As matrix PD is dense, it is hard to compute Equation 4.5 directly or solve the
inverse problem for a large vector t in the spatial domain. However, the fact that
matrix PD has a complimentary frequency space representation P̃D, both play an
important role in computing the explicit deconvolution and iterative least-squares
inversion. Since P̃D is a diagonal matrix, its eigenvalues correspond to the discrete
representation of the propagator PD(fk). That property allows us to construct the
well-known explicit deconvolution Equation 4.8 in subsection 4.2.2 and to analyse
the properties of iterative least-squares inversion in subsection 4.2.3.
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4.2.2 Linear phase retrieval algorithms: L2-norm regularization

The standard approach to phase retrieval in in-line x-ray PCI relies on the fact that
the observed phase-contrast image can be approximated by a linear transformation
acting on some unknown image (or a combination of a phase and an attenuation
image). This problem can be viewed as a system of linear equations:

b = A · x, (4.6)

where A is a matrix that represents one of the linear phase models, b a vector con-
taining the observed phase-contrast images, and x a vector containing the unknown
images. Since the observed images are corrupted by noise and inversion of A is usu-
ally ill-posed, Equation 4.6 is often replaced by an L2-norm regularized least-squares
problem (a.k.a. a Tikhonov regularization problem):

argmin
x

: ‖A · x− b‖2
2 + εL2 ‖x‖2

2 , (4.7)

where ‖...‖2
2 denotes the L2-norm and ε the regularization weight. The minimiza-

tion of the first term guarantees the best fit of the linear phase-contrast model to
the observed images, while the second term promotes solutions with the smallest
L2-norm thereby suppressing noise and outliers. Given that matrix A has a diago-
nal representation in frequency domain Ã, Equation 4.7 has an analytical solution
according to which each jth frequency component x̃j can be calculated using the
following expression:

x̃j =
Ã∗j,jb̃j

|Ãj,j|2 + εL2
, (4.8)

where Ã∗j,j and |Ãj,j|2 are respectively the conjugate and the squared magnitude
of the diagonal matrix Ã . When in underdetermined or ill-conditioned system
|Ãj,j| −→ 0, the corresponding frequency component of x̃ will be suppressed by L2
regularization:

x̃j ≈
Ã∗j,jb̃j
εL2

. (4.9)
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4.2.3 Linear phase retrieval algorithms: TV minimization

Similar to the L2-regularized approach (see Equation 4.6), Equation 4.7 can be re-
placed by a TV-regularized version:

argmin
x

: ‖A · x− b‖2
2 + εTV ‖x‖TV , (4.10)

where the second term ‖x‖TV denotes the so called Total Variation norm of x which
is defined by the gradient magnitude of the image x

‖x‖TV =
∑√

(∇hx)2 + (∇vx)2, (4.11)

where ∇h and ∇v are the horizontal and vertical finite difference operators. It
has to be noted that the TV norm defined by Equation 4.11 has the dimension of
1/length (assuming x dimensionless), so εTV has the dimension of length unlike
the dimensionless εL2. Therefore the ratio between the optimal εTV and εL2 will in
general depend on the choice of the pixel size. All values of εTV given in this article
implicitly have the dimension of the pixel size that is used in the calculation.

In contrast with the L2-regularized Equation 4.7 the second term of Equation 4.10
promotes solutions with sparse gradient magnitude. Equation 4.10 represents a non-
smooth convex minimization problem and can be calculated numerically using one
of the iterative TV minimization algorithms [63]. During this study we used an
implementation of TV minimization based on FISTA [109] which was introduced by
Beck and Teboulle in [110].

The Beck and Teboulle algorithm can be viewed as an extension of dual gradient
minimization [108]. Minimizing Equation 4.10 is achieved by splitting each iteration
into two sub-problems (or steps), the so called gradient step and denoising step:

1. Gradient step: finding an image x0 by reducing the unregularized L2 residual
term ‖A · x− b‖2

2 in the beginning of each iteration,

2. Denoising step: followed by regularizing this intermediate image x0 by mini-
mizing:

argmin
x

: ‖x0 − x‖2
2 + εTV ‖x‖TV . (4.12)

Alternating gradient and denoising steps has been shown previously to speed up the
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convergence without sacrificing accuracy [111].

The gradient step is based on FISTA where, in order to reach a high rate of conver-
gence, the current guess is updated using information from two previous iterations:

1 : yn−1 = xn−1 +
(
tn−1−1
tn

)
(xn−1 − xn−2) ;

2 : yn = yn−1 − 2
L

AT · (A · yn−1 − b) ;

3 : xn = DL,ε (yn) .

(4.13)

Here an intermediate vector y is introduced to take into account solution updates
from two previous iterations, tn is a scalar that is determined at each iteration as
tn = 1+

√
1+4t2n−1
2 , t0 = 1, and L denotes a so called Lipschitz constant that can be

calculated as the maximum eigenvalue of the product A∗ ·A (see [109] for a detailed
description). Operator DL,ε signifies the denoising step which can be implemented
using Fast Gradient Projection (FGP) [61]. During the denoising step, the TV norm
of the current guess is minimized depending on the regularization weight εTV and
the Lipschitz constant L.

If matrix Ã is diagonal, all frequency components of the solution ỹnj can be updated
during the gradient step (Equation 4.13) independently from each other:

ỹnj = ỹn−1
j − 2ωj

L
Ã∗j,j

(
Ãj,jỹn−1

j − b̃j
)
. (4.14)

A frequency weighting vector ωj ≤ 1 is introduced to control the convergence of the
algorithm.

In general, convergence properties might vary among different minimization algo-
rithms. However, the following observation is likely to be correct for algorithms
similar to the one described above: frequency components of the solution x̃j that
correspond to small matrix elements |Ãj,j| −→ 0 will only be modified in the denoising
step. Hence, its final value is determined solely by the TV-term of Equation 4.10.
The latter ensures a significant difference between how TV minimization and L2
regularization (see subsection 4.2.4) are computing the frequency components of
the solution that can not be retrieved from the observations.
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4.2.4 Linear phase retrieval algorithms: models

As was explained in the previous section, TV minimization can be used for phase
retrieval as long as the phase-contrast model can be expressed as a linear system
Equation 4.6.

Let us introduce matrices CD and SD that represent the convolution with the real
and imaginary parts of the Fresnel propagator PD respectively. Their frequency
domain representations have the following form:

C̃D =


cos (α1) ∅

. . .
∅ cos (αk)

 , S̃D =


sin (α1) ∅

. . .
∅ sin (αk)

 (4.15)

where αj = πλD|fj|2, λ stands for the X-ray wavelength and D is the effective
propagation distance. Using matrices CD and SD we can construct matrix A and
the corresponding update rule for the gradient step for the following linear phase
retrieval models:

CTF model. The CTF model is widely used for phase retrieval in cases when the
specimen yields negligible attenuation and slowly varying phase [47]. The Fourier
transform of the phase-contrast image ĨD(f) is approximated by the Fourier trans-
forms µ̃(f) and ϕ̃(f) of the projected attenuation and projected phase images of the
specimen:

ĨD(f) = δ(f)− 2 cos(α)µ̃(f) + 2 sin(α)ϕ̃(f). (4.16)

Linear systems that are formed by combining Equation 4.16 for a set of m phase-
contrast images {ID(1), ..., ID(m)} can easily be represented in matrix form Equation 4.6
(in frequency domain for |fj| > 0) by construction of Ã, x̃ and b̃:

Ã =


−2C̃D(1) 2S̃D(1)

...

−2C̃D(m) 2S̃D(m)

 , x̃ =
µ̃
ϕ̃

 , b̃ =


ĨD(1)

...

ĨD(m)

 . (4.17)

Here the unknown vectors µ̃ and ϕ̃ are concatenated into a single vector x̃, vector b̃
contains all observed images ĨD(i) and matrix Ã is obtained by concatenating pairs of
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matrices C̃D(i) and S̃D(i), where each pair corresponds to a particular propagation
distance D(i). Using this representation we can find an update rule similar to
Equation 4.14 for each jth frequency component of the unknown vector x̃. We will
separate it into the update rules for µ̃ and ϕ̃ as follows:

µ̃nj = µ̃n−1
j + 4ωj

Lm

m∑
i=1

C̃(j,j)
D(i)

(
−2C̃(j,j)

D(i)µ̃
n−1
j + 2S̃(j,j)

D(i)ϕ̃
n−1
j − ĨjD(i)

)
,

ϕ̃nj = ϕ̃n−1
j − 4ωj

Lm

m∑
i=1

S̃(j,j)
D(i)

(
−2C̃(j,j)

D(i)µ̃
n−1
j + 2S̃(j,j)

D(i)ϕ̃
n−1
j − ĨjD(i)

)
.

(4.18)

Calculation of Equation 4.18 has to be carried out at each iteration of the gradient
and denoising steps. Since the denoising step must be computed in the spatial
domain, two inverse Fourier transforms (for µ̃ and ϕ̃) must be calculated at each
iteration before the denoising step and two Fourier transforms after the denoising
step.

Mixed model. The Mixed model [49] is used for phase retrieval in cases with
(significant) attenuation. In an approximated version of this model (assuming only
the first two terms), the phase-contrast image ĨD(f) becomes:

ĨD(f) = cos(α)Ĩ0(f) + 2 sin(α) ˜(I0ϕ)(f). (4.19)

Here Ĩ0(f) denotes the Fourier transform of the intensity image at zero distance.
Ĩ0(f) is fully determined by the attenuation image of the specimen and can be
expressed in the spatial domain as I0 = e−2µ. The linear system that describes a set
of phase-contrast images {ĨD(1), ..., ĨD(m)} based on Equation 4.19 can be expressed
through the following Ã, x̃ and b̃:

A =


C̃D(1) 2S̃D(1)

...

C̃D(m) 2S̃D(m)

 , x̃ =
 Ĩ0

( ˜I0ϕ)

 , b̃ =


ĨD(1)

...

ĨD(m)

 . (4.20)

Here we treat the element-wise product of the intensity image and the phase image
(I0ϕ) as an unknown image independent from the unknown intensity image I0. Using
this representation we can write down the update rule Equation 4.14 for the gradient
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b.a. f.

g.c.

d.

e

Figure 4.1: Phase reconstructions based on the simulated data of the ’flat’ phantom
for TV and L2 regularization with and without frequency weighting (see Sec.
subsection 4.3.1 for simulation parameters). (a) Ground truth. (b) Intensity
image at zero distance with Gaussian noise. (c) Propagated phase-contrast image
at 1m with Gaussian noise. (d) L2-regularized solution, no frequency weighting.
(e) TV-regularized solution, no frequency weighting. (f) L2-regularized solution,
with frequency weighting. (g) TV-regularized solution with frequency weighting.

step as:

Ĩn0,j = Ĩn−1
0,j −

2ωj

Lm

m∑
i=1

C̃(j,j)
D(i)

(
C̃(j,j)
D(i)Ĩ

n−1
0,j + 2S̃(j,j)

D(i)
˜(I0ϕ)n−1

j − ĨjD(i)

)

˜(I0ϕ)nj = ˜(I0ϕ)n−1
j − 4ωj

Lm

m∑
i=1

S̃(j,j)
D(i)

(
C̃(j,j)
D(i)I

n−1
0,j + 2S̃(j,j)

D(i)
˜(I0ϕ)n−1

j − ĨjD(i)

)
.

(4.21)

Phase-attenuation duality models. These models can be used when the specimen
has a homogeneous composition or, in the limited range of X-ray energies, when the
specimen is composed of light elements [52, 54]. In duality models the phase and
attenuation images of a specimen are assumed to be proportional to each other, i.e.
σ = ϕ

µ
, permitting to reduce the number of unknown variables. In this study we

consider two duality models:

ĨD(f) = 2 (σ sin(α)− cos(α)) µ̃(f), (4.22)
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which was derived from the CTF model [53] and :

ĨD(f) = (cos(α) + (α− σ) sin(α)) Ĩ0(f), (4.23)

which was derived from the Mixed model [54]. Both models can be used to retrieve
the projected attenuation image of the specimen based on a single phase contrast
image ĨD(f) acquired at a suitable distance D > 0 as well as using a set of m phase-
contrast images {ĨD(1), ..., ĨD(m)} recorded at different distances. The update rule
for the gradient step based on Equation 4.22 is then simplified into:

µ̃nj = µ̃n−1
j − 4ωj

Lm

m∑
i=1

B̃i

(
2B̃iµ̃

n−1
j − ĨjD(i)

)
, (4.24)

where B̃i = (σS̃(j,j)
D(i) − C̃(j,j)

D(i)). The update rule for the gradient step based on
Equation 4.23 has the following form:

Ĩn0,j = Ĩn−1
0,j −

2ωj
Lm

m∑
i=1

B̃i

(
B̃iĨn−1

0,j − ĨjD(i)

)
, (4.25)

where B̃i = (C̃(j,j)
D(i) + (α− σ)S̃(j,j)

D(i)).

4.3 Simulations

As indicated before, TV minimization permit an accurate solution for a class of
inverse problems based on severely incomplete sets of observations. The underlying
assumption of all TV minimization approaches is that the unknown signal must have
a sparse gradient magnitude. In the field of image reconstruction such assumption is
fulfilled when the reconstructed image is piecewise constant, i.e. the intensity only
changes in a step-like manner.

4.3.1 Phantom image with sparse gradient magnitude

Our first demonstration of phase retrieval based on TV minimization uses a ’flat’
piece-wise constant phantom. Here TV minimization is expected to yield high accu-
racy. However, in the following subsections we will abandon this restriction and use
a ’spheres’ phantom to demonstrate the performance of TV minimization in more
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Figure 4.2: The radial frequency spectrum (angular averaged) of the reconstruc-
tion. Dotted line shows |Ãj,j| on both graphs. Left: normalized difference between
the solutions with and without TV-regularization, i.e. (εTV = 0.02) vs. (εTV = 0).
Right: normalized error-magnitude of the TV-regularized solution (solid line) and
the L2-regularized solution (dashed line). The graphs are normalized against the
radial frequency spectrum of the ground truth image.

realistic cases.

Figure 4.1 shows the comparison between L2-regularized and TV-regularized phase
retrieval for the CTF model. The ground truth projected attenuation and phase
images (256× 256 pixels) were computed for a randomly generated composition of
overlapping polyethylene disks immersed in a layer of water with a total thickness
d = 0.1 mm (Figure 4.1(a)). Subsequently phase-contrast images ID1 and ID2 are
generated using Fresnel propagation for a monochromatic X-ray energy of 20KeV
and a pixel size of 1 µm (Figure 4.1(b, c)). In the current simulation we used prop-
agation distances {0 m, 1 m}. Gaussian noise with standard deviation of 0.02 was
added to both images mimicking acquisition with poor SNR. The optimal regular-
ization parameters εL2 and εTV were chosen such that the overall Root Mean Square
Error (RMSE) is minimal for the listed conditions (see subsection 4.3.3). In prac-
tice, they must be derived from an estimate of the SNR of the measured images. No
stopping criteria was used in the gradient step of the TV minimization, instead all
reconstructions were computed using 1000 iterations in order to guarantee conver-
gence.

The resulting solutions are shown in Figure 4.1(d, e). The frequency spectrum (we
will use this term for the angular average of the magnitude of 2D Fourier transform
of the image) of the error magnitude of the solutions can be seen on Figure 4.2
(right). The frequency spectrum of the error was normalized against the frequency
spectrum of the ground truth image. It is evident from this graph that when the
optimal regularization weights are used, TV regularization is significantly more ac-
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curate then L2 regularization at all frequencies where the direct phase retrieval
problem is undetermined (for frequencies components with |Ãj,j| −→ 0). Note that
TV minimization can yield higher error within particular bands of frequencies to
promote a sparse gradient. We have already pointed out in subsection 4.2.2 and
Section subsection 4.2.3 that there are major differences in how TV minimization
treats frequency components of the solution that correspond to |Ãj,j| −→ 0. In order
to confirm this, we compared the results of the TV method with εTV = 0.02 and
εTV = 0 (no TV minimization) when applied to noise-free data. Figure 4.2(left)
shows that the frequency spectrum of the normalized difference between the regu-
larized and non-regularized solutions. It is evident that the regularization strength
depends heavily on |Ãj,j|.

So far we used scalar regularization weights εL2 and εTV in both regularization
approaches. One can achieve a significantly improved accuracy by using a frequency
dependent regularization weighting instead. In L2 regularization, the scalar εL2 can
be replaced by the frequency dependent factor εL2,j ∼ SNR−1(fj) (i.e. Wiener
deconvolution). In our investigation we assumed the SNR of the reconstructed
image to be proportional to its frequency spectrum. The latter can be estimated
from a preliminary reconstruction based on a scalar regularization weight using
either L2 or TV regularization. Such estimation is demonstrated in Figure 4.3(left).
The estimate of the image SNR was introduced into TV minimization approach
using the frequency weighting vector ωj ∼ SNR(fj) in Equation 4.14. Resulting
L2- and TV-regularized solutions are depicted in Figure 4.1(f) and Figure 4.1(g)
respectively. It can be seen in Figure 4.3(right) that the error of TV-regularized
solution is significantly lower than the error of L2-regularized solution in a wide
frequency range.

4.3.2 Realistic phantom

In order to demonstrate the performance of the TV-minimization in realistic cases
we tested L2-regularization and TV-minimization phase retrieval approaches for
phantoms with a non-sparse gradient. Figure 4.4 shows reconstructions of the pro-
jected phase image of a composition of randomly sized and positioned polyethy-
lene spheres immersed in water (the rest of simulation parameters match those
from subsection 4.3.1). Reconstructed images are obtained using both L2- and TV-
regularization based on the CTF model, the Mixed model as well as their phase-
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Figure 4.3: Radial frequency spectrum (angular averaged) of the retrieval results
using the frequency dependent regularization weights (i.e. frequency weighting).
Dotted line shows |Ãj,j| on both graphs. Left: estimated frequency spectrum
of the specimen (solid line). Right: normalized error-magnitude of the TV-
regularized solution (solid line) and L2-regularized solution (dashed line) with
frequency weighting.

attenuation duality modifications. In phase retrieval based on duality models we
have used a single simulated phase-contrast image with propagation distance 1 m.
The corresponding normalized frequency spectra of the error-magnitude are depicted
in Figure 4.5. It is evident that the TV-regularized solutions yield lower error in
comparison with the L2-regularized ones in a broad range of frequencies. It is also
apparent that given the parameters used in the current simulation (low attenuation
and moderate phase changes), reconstructions obtained with the CTF model and
the Mixed model are virtually indistinguishable, while there is some discrepancy
with the models that are based on phase-attenuation duality assumption.

4.3.3 Optimal regularization weights

The accuracy of both regularization methods considered in this paper strongly de-
pend on the choice of the regularization weights εL2 and εTV . In practice, these
parameters are estimated from the measured data or chosen in some heuristic man-
ner. In order to investigate how the choice of the regularization weight affects the
accuracy of phase retrieval, we measured the total RMSE of the reconstructed phase
images varying two parameters: standard deviation (STD) of the Gaussian noise
and the regularization weight of the phase retrieval algorithm. The phase-contrast
images were simulated using the polyethylene spheres phantom using the simula-
tion parameters described in subsection 4.3.1 and subsection 4.3.2. Figure 4.6(left)
shows the values of RMSE for phase retrieval based on the CTF model. Curves
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c.
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Figure 4.4: Reconstructions based on the simulated data of the ’spheres’ phantom
for different propagation models. All results are obtained using frequency weight-
ing. Top row of images (a, c, e, g) show L2-regularized solutions. The bottom row
of images (b, d, f, h) show TV-regularized solutions. Solutions (a, b) are based
on the CTF model, (c, d) on the Mixed model, (e, f) on the dual-CTF model and
(g, h) on the dual-Mixed model.

L2-1, L2-2, L2-3 and L2-4 represent the RMSE of the L2-regularized solutions with
noise STD = 0.01, 0.02, 0.05 and 0.1 respectively. Curves TV-1, TV-2, TV-3 and
TV-4 represent the RMSE of the TV-regularized solutions with corresponding noise
STD. It can be seen that TV-regularization yields solutions with a 4-7 times lower
total RMSE in comparison to those obtained with L2 regularization. It is also ev-
ident that estimation of the optimal regularization parameter is more important
for TV-regularization then for L2 regularization as it affects the RMSE to a larger
extent.

Along with various types of additive noise, non-linear effects that are not taken into
account by the phase retrieval models can become an important source of errors.
The fraction of signal to error due to non-linearity of the CTF model is, in a certain
range of conditions, proportional to | sin(α)|[56]. That property allows to treat the
non-linearity error as another form of noise. Figure 4.6(right) demonstrates the
values of RMSE of the phase retrieval based on the CTF model applied to noise-
free phase-contrast images simulated for phantoms of different thicknesses. Curves
L2-1, L2-2, L2-3 and L2-4 show the RMSE of the L2-regularized phase retrieval for
phantoms with a total thickness = 0.1 mm, 0.25 mm, 0.5 mm and 1 mm respectively.
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Figure 4.5: The radial frequency spectrum (angular averaged) of the reconstruc-
tions for different propagation models. Dotted line shows |Ãj,j| on all graphs.
Normalized error magnitude of the TV-regularized solution (solid line) and L2-
regularized solution (dashed line).

Curves TV-1, TV-2, TV-3 and TV-4 represent the RMSE of the corresponding TV-
regularized solutions. The thickness of the phantom has a dramatic effect on the
accuracy of the phase retrieval based on the CTF model since it introduces larger
variations in projected attenuation and phase images which leads to greater non-
linearity of the observed phase-contrast image. It is evident that TV-regularized
phase retrieval yields similar accuracy with the L2-regularized solution in the case
of thin phantom. However the advantage of TV regularization becomes significant
for thicker phantoms.

4.4 Experiment

To test the TV-regularized phase retrieval on experimental data we have used X-ray
phasecontrast images of a test pattern designed to assess the resolution of the X-ray
imaging system. The pattern consisted of 700 nm high lithographic gold structures
on top of a Si substrate. Phase-contrast data was acquired at the beamline ID22NI
of the European Synchrotron Radiation Facility (Grenoble, France). The incoming
x-rays were focused using Kirkpatrick-Baez mirror system, which gave a point focus
with sub 100 nm with and height (FWHM) [112]. The mean energy of the x-rays
was 17.5 KeV (∼ 1.5% bandwidth) with 1012 photons/s in the focus. The focus was
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Figure 4.6: Influence of the regularization weight on samples with increasing noise
levels and on samples of increasing thickness. RMSE of the solution is shown
against the magnitude of regularization parameter for L2 regularization (crosses)
against TV regularization (plus signs). Left: each curve shows errors for different
noise levels, STD = 0.01, 0.02, 0.05, 0.1. Right: each curve shows errors for
different specimen thickness, 0.1 mm, 0.2 mm, 0.5 mm, 1 mm.

used as a point source for projection microscopy [113] giving effective pixel size of
53 nm. Images were acquired at four propagation distances {27.4 mm, 28.3 mm,
31.8 mm, 40.3 mm}.

Figure 4.7 shows reconstructed phase images of the lines and dots pattern and so
called Siemens star pattern. The L2-regularized solutions are shown in the top row,
while the bottom row shows the TV-regularized solutions. Both phase-retrieval ap-
proaches were based on phase-attenuation duality CTF model. The reconstructions
depicted in sub-figures (a, b, e and f) are based on phase-contrast images acquired
at four different distances. The reconstructions from sub-figures (c, d, g and h) are
based on a single phase-contrast image acquired at a propagation distance 27.4 mm.

It is evident that TV regularization permits a very high quality reconstruction of
lines and dots pattern based only on a single phase-contrast image. The high fre-
quency ripple-like artifacts are efficiently suppressed while the pattern is accurately
reconstructed. That can be explained by the fact that the reconstructed image has
a sparse gradient magnitude and that spatially localized structures such as dots and
lines have a broad footprint in frequency space. The problem of phase retrieval based
on a single phase-contrast image is ill-posed within a set of spatial frequencies that
depends on the acquisition parameters. TV regularization allows to fill-in these gaps
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in frequency space by applying the constraint of sparse gradient magnitude. Phase
retrieval of the Siemens star pattern shows that the structures which are periodic
in space are harder to reconstruct. Their footprint in frequency space is localized
and might be completely irrecoverable from a single phase-contrast image with the
given acquisition parameters.

a. c.

b. d.

e. g.

f. h.

Figure 4.7: Phase retrieval from experimental data using the dual-CTF model.
(a-d) Phase retrieval of a ’dots and lines’ pattern. (e-h) Phase retrieval of a ’star’
pattern. (a, e) L2-regularized solution based on 4 images recorded at different
propagation distances. (b, f) TV-regularized solution based on 4 images recorded
at different propagation distances. (c, g) L2-regularized solution based on a single
recorded image. (d, h) TV-regularized solution based on a single recorded image.

4.5 Conclusion

Phase retrieval in propagation based X-ray PCI can be improved using iterative TV
minimization algorithms. Reconstructions based on simulated and experimental
data show that phase retrieval based on TV minimization can significantly outper-
form the current practice, a deconvolution approach with L2 regularization. TV
minimization can be used with different linear phase retrieval models including the
CTF model, the Mixed model and the phase-attenuation duality models. Although
the method works best for specimen that adhere to the constraints, the method also
improves the phase reconstruction for specimen that are not exactly sparse in their
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gradient magnitude. TV minimization provides an effective regularization instru-
ment for solving an underdetermined linear systems of equations. Analysis of the
Fourier spectrum of the error of the reconstructed phase images clearly demonstrates
that TV minimization allows partial recovery of the solution within the frequency
bands that are undefined by the particular phase-contrast model or corrupted by
noise. That feature of TV minimization allows effective suppression of the high
frequency artifacts in single-distance phase retrieval based on phase-attenuation du-
ality models and permits more accurate reconstruction of low spatial frequencies in
multi-distance approaches.

TV minimization finds the solution in the form of a TV-regularized least-squares fit
and it does not require the knowledge of the attenuation part of the specimen. A
frequency dependent estimation of the signal-to-noise ratio can be used for each ob-
served image, dramatically improving the accuracy of reconstruction. Simulations
show that TV regularization can suppress errors that occur both due to additive
noise and due to non-linearity of the phase propagation. Experimental data has
shown that TV minimization can also significantly improve the accuracy of phase
reconstruction of real specimen that comply with gradient sparsity condition and
imaged under realistic circumstances. These results could allow to decrease the
number of phase-contrast images that are needed for the accurate image reconstruc-
tion in some applications of X-ray PCI. This is particularly important for in situ
experiments or to reduce radiation damage to the specimen.
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5 Algebraic phase retrieval
tomography

Abstract1

The reconstruction problem in in-line X-ray Phase-Contrast Tomography is usually
approached by solving two independent linearized sub-problems: phase retrieval and
tomographic reconstruction. Both problems are often ill-posed and require the use
of regularization techniques that lead to artifacts in the reconstructed image. We
present a novel reconstruction approach that solves two coupled linear problems al-
gebraically. Our approach is based on the assumption that the frequency space of
the tomogram can be divided into bands that are accurately recovered and bands
that are undefined by the observations. This results in an underdetermined linear
system of equations. We investigate how this system can be solved using three dif-
ferent algebraic reconstruction algorithms based on Total Variation minimization.
These algorithms are compared using both simulated and experimental data. Our
results demonstrate that in many cases the proposed algebraic algorithms yield a
significantly improved accuracy over the conventional L2-regularized closed-form so-
lution. This work demonstrates that algebraic algorithms may become an important
tool in applications where the acquisition time and the delivered radiation dose must
be minimized.

1This work is published in: A. Kostenko, K. J. Batenburg, A. King, S. E. Offerman and L. J.
van Vliet, “Total variation minimization approach in in-line x-ray phase-contrast tomography,”
Optics Express, in press (2013).
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5.1 Introduction

Quantitative X-ray Phase-Contrast Tomography (X-ray PCT) requires three-dimensional
image reconstruction from a series of two-dimensional in-line phase-contrast images
acquired under various angles. Within the linear approximation, the problem of
image reconstruction in X-ray PCT is typically treated as two separate linear sub-
problems which are solved sequentially [114]. Namely, the phase retrieval problem,
where the projected refraction index (i.e. linear phase and attenuation) of the spec-
imen is retrieved independently for each recorded phase-contrast image and the
problem of tomographic reconstruction, where the three-dimensional distribution of
the refraction index is computed from the collection of retrieved projections.

Most often linear phase retrieval of an individual tomographic projection is associ-
ated with inversion of an ill-posed linear system. In such cases regularization (e.q.
L2 or L1 regularization) permits computation of an approximate inverse solution
[97]. However, it will often cause artifacts that are subsequently propagated into
the tomographic reconstruction of the object.

We believe that a more accurate reconstruction approach can be designed by com-
bining phase retrieval and tomographic reconstruction into a single underdetermined
linear problem. This assumption is based on the fact that tomographic projections
of the object are in general not independent from each other. According to the
so called Helgason-Ludwig consistency conditions [60], individual projections of the
object must be interrelated leading to a certain degree of redundancy within the to-
mographic data. The theory of Compressed Sensing [65] suggests an even stronger
correlation between the individual tomographic projections for objects that have a
sparse representation in a certain domain. For sparse solutions, the projection data
shows a low rate of innovation, which implies that a limited number of projections
suffices for exact reconstruction [115]. These facts lead us to a conclusion that the
accuracy of phase retrieval of a single tomographic projection can benefit from the
redundancy contained in the complete tomographic dataset. Regularization tech-
niques based on the assumption of sparsity were shown to improve the quality of
image reconstruction in cases when the reconstructed image is not strictly sparse
[108]. We will demonstrate how such redundancy can be exploited using an iterative
algebraic reconstruction approach for in-line X-ray PCT.
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5.2 Materials and methods

5.2.1 Single-distance phase retrieval

Let us consider a single-distance phase-retrieval model based on the Contrast Trans-
fer Function (CTF) approach [53]. In this model the projected phase image of the
specimen φ(s) is assumed to be proportional to the projected attenuation image
µ(s). The proportionality ratio σ = φ/µ can be calculated as the ratio between
the real and imaginary parts of the refractive index of the specimen. This allows
us to express the Fourier transform of the phase-contrast image Ĩ(w) as the Fourier
transform of the projected attenuation image µ̃(w) multiplied with the CTF that
corresponds to the object-to-detector distance D and the X-ray wavelength λ:

Ĩ(w) = δ(w)−
(
2 cos(πλDw2)− 2σ sin(πλDw2)

)
· µ̃(w). (5.1)

Here w stands for the spatial frequency and δ(w) denotes the delta function at the
origin of spatial frequency coordinates. A parallel monochromatic X-ray beam with a
uniform illumination and intensity I0 = 1 was assumed for simplicity. This model is
valid for chemically homogeneous or quasi-homogeneous objects (i.e. φ/µ ≈ const)
with weak attenuation and slow-varying phase or for objects that are composed
from light elements in a limited range of X-ray energies [52, 54]. Obviously, it
is impossible to recover the projected attenuation image µ̃(w) from the observed
phase-contrast image Ĩ(w) at frequencies w that correspond to the zero-crossings
of the CTF (see Figure 5.1). Also, in the vicinity of each zero-crossing of the CTF
the inverse problem based on Equation 5.1 will be ill-posed due to measurement
noise in addition to systematic linearization errors. At these frequencies µ̃(w) has
to be computed using additional constraints that favor a particular solution based
on a-priori knowledge.

Let us assume that the vectors µ and I are defined in the spatial domain on a
uniform grid of k values that belong to µ(s) and (I(s)− 1) respectively. A linear
operator F will represent the uniform discrete Fourier transform. Element-wise
multiplication with the CTF function is denoted by the linear operator P . Then
Equation 5.1 can be discretized in the following form:

FI = PFµ. (5.2)
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When the matrix notation is considered, P can be represented by a square k × k
diagonal matrix:

P = diag(P (w1), P (w2), ..., P (wk)), (5.3)

where P (w) = 2σ sin(πλDw2)− 2 cos(πλDw2). A more detailed explanation of the
matrix notation is given in our paper on two-dimensional phase retrieval [97]. Now
the approximate solution to Equation 5.1 can be found by solving the corresponding
least squares problem:

µ = arg min
µ
‖PFµ−FI‖2

2. (5.4)

Here ‖...‖2
2 represents the L2 norm of the corresponding functional. To avoid am-

plification of errors by the terms that correspond to small P (w), we will exclude
these terms from the system of equations. To do so we assume that the image µ is
irrecoverable within the frequency bands |w−w0| < ε, where w0 is the nearest zero-
crossing of the CTF and ε is a small constant that depends on the signal-to-noise
ratio. Now an additional linear operator can be introduced:

Z = diag(Z(w1), Z(w2), ..., Z(wk)). (5.5)

Operator Z can be represented by a binary matrix and is applied to both sides of
Equation 5.2, making sure that terms corresponding to the small P (w) are set to
zero:

ZFI = ZPFµ. (5.6)

The system that we have obtained is underdetermined (it does not allow to determine
(Fµ) for |w − w0| < ε) and does not have a unique solution unless additional
constraints are added. Hofmann [56] proposed to use a simple constraint (Fµ) =
0 for |w − w0| < ε in order to solve the phase-retrieval problem. However, we
expect that applying sparsity constraints to the joint phase-contrast-tomographic
reconstruction will yield a better accuracy. A frequency dependent ε can be defined
when it is possible to estimate the power spectrum of the noise and the power
spectrum of the reconstructed image modulated with the CTF a-priori. Otherwise
a constant factor ε can be chosen, for instance, after evaluating the quality of the
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direct reconstruction proposed in [56].

5.2.2 Tomography

In this subsection we will use coordinate s to describe the transverse coordinate an
observed image of the object and w as its counterpart in the Fourier domain. A
new coordinate θ will be introduced for the angle at which the image is recorded
during the tomographic acquisition. Coordinates (x, y) will be used to describe a
2D tomographic image of the object (see Figure 5.1).

Consider a two-dimensional image f(x, y) which is defined on R2 → C as a square
integrable function with bounded support. A linear projection of f(x, y) in the
direction θ will be defined along the coordinate s as:

p(θ, s) =
� ∞
−∞

f(t sin θ + s cos θ,−t cos θ + s sin θ)dt. (5.7)

According to the central slice theorem, if a two-dimensional Fourier transform of the
image f(x, y) is computed

f̃(u, v) =
� ∞
−∞

� ∞
−∞

f(x, y) · e−2πi(xu+yv)dxdy, (5.8)

values of f̃(u, v) that lie on a radial line passing through the center of coordinates
under an angle θ (central slice) will correspond to the one-dimensional Fourier trans-
form taken along the s coordinate of the projection p(θ, s):

f̃(w cos θ, w sin θ) =
� ∞
−∞

p(θ, s) · e−2πiswds. (5.9)

The central slice theorem demonstrates an important relation between the Radon
transform and the Fourier transform of the two-dimensional image f(x, y). It fol-
lows from Equation 5.9 that the function f(x, y) can be sampled in 2D Fourier
space using 1D Fourier transforms of its own projections p(θ, s). This facilitates
direct reconstruction based on the inverse Fourier transform of f̃(u, v) which has
to be computed using interpolation. Moreover, it was shown in [65] that by us-
ing appropriate additional constraints, a piece-wise constant object (i.e. an object
that has sparse gradient magnitude) can be accurately reconstructed from a severely
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Figure 5.1: Central slice theorem for single-distance X-ray Phase Retrieval Tomog-
raphy. Spatial domain representation: observations I(θ, s) can be modeled as the
projection of the unknown image f(x, y) followed by the convolution with a linear
propagator. Fourier domain representation: Fourier transform of the observed im-
age Ĩ(θ, w) can be modeled as the slice of the unknown image f̃(w cos θ, w sin θ))
multiplied with P (w). The Fourier representation of the unknown image f(u, v)
is irrecoverable at the frequency bands corresponding to zero-crossings of P (w).

undersampled Fourier representation f̃(u, v), i.e. using very few projections. The
latter has important consequences for regularization of the phase-retrieval problem
described in the following subsection.

5.2.3 Phase-contrast tomography

By combining Equation 5.1 and Equation 5.9 we can rewrite the central slice the-
orem for what we call Phase Retrieval Tomography (PRT), i.e. phase retrieval
combined with tomographic reconstruction:

f̃(w cos θ, w sin θ) = Ĩ(θ, w)− δ(w)
2σ sin(πλDw2)− 2 cos(πλDw2) . (5.10)

Here Ĩ(θ, w) is the one-dimensional Fourier transform of the phase-contrast sino-
gram. According to Equation 5.10, f̃(u, v) is undetermined for frequencies that
correspond to zero-crossings of the CTF. And since the accuracy of the linear ap-
proximation and the observations Ĩ(θ, w) is finite, f̃(u, v) can only be computed
outside of the circular bands that correspond to |w − w0| < ε (Figure 5.1). Thus,
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the described problem of the tomographic reconstruction based on single-distance
phase-contrast data is underdetermined.

Let us introduce a discrete space-domain representation of the tomography problem.
Assume that the vector f is composed from m samples of f(x, y) defined on a
Cartesian grid. Projections p(θ, s) are sampled on a regular grid of n elements
stored in a vector p. Using the Radon transform operator R we can write a discrete
representation of Equation 5.7:

p = Rf . (5.11)

Here R can be represented by an n ×m matrix. This system can be solved using
either an approximation of the R−1 (e.g. filtered back-projection) or in least-squares
sense using one of the algebraic reconstruction algorithms (e.g. EM, ART, SIRT)
[116].

For PRT, the tomography model represented by Equation 5.11 can be combined
with the linear phase-contrast model of Equation 5.6 into a single linear inverse
problem:

ZFI = ZPFRf . (5.12)

Here, the linear operators Z, P and F are applied to vectors of n elements that
contain all projections generated by Rf instead of a single projection of k elements
as it is in Equation 5.6. Their matrix representations can be easily constructed by
stacking the corresponding “single projection” matrices into a block diagonal matrix
of n× n elements.

5.2.4 Preconditioning

Before introducing algebraic methods suitable for solving Equation 5.12, we would
like to introduce two other representations of the PCT problem that, under certain
conditions, may be preferable due to faster convergence.

We will assume that for the frequencies |w−w0| > ε, Equation 5.1 can be accurately
computed using direct inversion. Then Equation 5.12 can be rewritten as follows:

ZFµ = ZFRf , (5.13)
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where µ is a vector representation of the projected attenuation of the object, which
can be calculated from the phase-contrast sinogram I using direct phase retrieval.
Algebraic methods based on Equation 5.13 are likely to converge faster than the ones
based on Equation 5.12, since the inversion of the P operator is already solved during
the phase retrieval step. However, unlike the approach, where the tomographic
reconstruction is computed subsequently after phase retrieval, Equation 5.13 allows
us to take into account that the information about the attenuation of the object is
lost at spatial frequencies |w − w0| < ε. Such an approach can also be used when
the number of tomographic projections is limited.

Yet another version of the linear system can be derived from the central slice the-
orem given by Equation 5.10. Now for the case that an accurate inverse Radon
transform of the sinogram can be calculated. After changing from polar coordi-
nates to Cartesian coordinates in Equation 5.10, we can write down the following
discretized system:

F̂R−1I = P̂F̂f , (5.14)

where R−1 is the approximated discrete inverse Radon transform (e.g. filtered back-
projection), F̂ is the two-dimensional discrete Fourier transform and P̂ represents
an elementwise multiplication with the discrete version of the two-dimensional CTF
= 2σ sin (πλD(u2 + v2))− 2 cos (πλD(u2 + v2)). Equation 5.14 permits application
of algebraic algorithms with additional constraints to the phase retrieval problem
while the problem of tomographic reconstruction is solved in a non-iterative manner.
This approach can also be faster than calculation based on Equation 5.12, since it
does not require recalculation of the back and forward Radon transform for each
iteration.

5.2.5 Algebraic methods

An approximate solution of Equation 5.12 can be found using least-squares mini-
mization:

arg min
f

: ‖Af − Ĩ‖2, (5.15)

80



5.2 Materials and methods

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.2: Simulated phase-contrast tomography of the Shepp-Logan phantom.
(a) Ground truth; (b) projected attenuation; (c) observed phase-contrast sino-
gram; (d) sinogram after phase-retrieval; (e) ’direct’ filtered-back projection; (f)
filtered-back projection after phase retrieval.

where A = ZPFR and Ĩ = ZFI. Using gradient descent, f is computed according
to the following iterative scheme:

fj+1 = fj − 2αAT (Afj − Î), (5.16)

where j is the iteration number, AT is the transpose of A, so AT = RTFTPTZT .
The constant α represents the step size in the opposite gradient direction. In order
to guarantee convergence, the constant α has to be sufficiently small and can either
be calculated using an additional line-search step or from the eigenvalues of (ATA)
[117]. It is worth noting that the Fourier transform operator F is orthogonal, so
FT = F−1; operators Z and P are represented by diagonal matrices, so ZT = Z,
PT = P , and RT represents the unfiltered back-projection operator.

We have mentioned previously that in conventional tomography a piecewise con-
stant image f can often be computed accurately from severely underdetermined
tomographic system using methods with additional constraints, such as TV min-
imization. In the TV minimization approach an additional term is added to the

81



Chapter 5 Algebraic phase retrieval tomography

objective function:

arg min
f

: ‖Af − Î‖2 + λTV ‖f‖TV , (5.17)

where ‖f‖TV = ∑√
(∇hf)2 + (∇vf)2, ∇h and ∇v are the horizontal and vertical

finite difference operators and λTV denotes the weight of the regularization term.

Depending on the magnitude of λTV the solution will be promoted either towards
greater conformity with the observed data or towards greater sparsity of the gradient
magnitude. Equation 5.17 represents a non-smooth convex minimization problem
which can be solved using one of the iterative TV minimization methods [61, 63].
In the current investigation we will demonstrate results obtained using so called
FISTA-based TV minimization which is described in detail in [109]. The same algo-
rithm was applied by us to several different phase-retrieval problems in [97]. Further
on we call the solutions based on minimization of Equation 5.12 - full algebraic re-
construction, the ones based on Equation 5.13 - algebraic tomographic reconstruction
and Equation 5.14 - algebraic phase retrieval.

5.3 Simulations

In order to compare the accuracy of tomographic reconstructions based on the pro-
posed reconstruction approaches, we simulated phase-contrast tomographic data us-
ing Fresnel propagation. A discretized Shepp-Logan phantom (256 x 256 pixels) was
used as a ground truth image to generate the density image f(x, y) (Figure 5.2(a)).
The wave function of the object T (θ, s) was computed for each tomographic angle
θ using the following expression:

T (θ, s) = exp
(
−2π
λ
· (β + iδ) · Rf(x, y)

)
, (5.18)

were δ denotes the decrement of the complex refractive index, β stands for the
attenuation index and f(x, y) denotes a dimensionless normalized attenuation of
the digital phantom. Subsequently, the intensity images were generated using the
following expression:

I(θ, s) = F−1
(
OTF · F|F−1(Pλ · FT (θ, s))|2

)
+ noise, (5.19)
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where the Fresnel propagator is represented by Pλ = eiπλDw
2 and the Optical

Transfer Function (OTF) of the imaging system is modeled by a Gaussian func-
tion OTF = e−

w2a2
2 with standard deviation a (Figure 5.2(c)). Figure 5.2(e) shows

the result of direct application of filtered-back projection to the “raw” phase-contrast
images. The result of the sequential reconstruction is shown on Figure 5.2(d) and
Figure 5.2(f). The retrieved phase images (Figure 5.2(d)) suffers from typical arti-
facts – low frequency noise and fringes around large variations of intensity. These
artifacts correspond to spatial frequencies at which the CTF has low amplitude
and the reconstruction errors are high. They are propagated into the subsequent
tomographic reconstruction (Figure 5.2(f)).

All images were generated for monochromatic homogeneous illumination with a
wavelength λ = 0.31Å (energy 40 KeV), propagation length D = 1 m and a pixel
size of 1 µm. Noise was added to the sinogram after modeling the complete imaging
chain. Since the intensity is varying only moderately across the sinogram, an additive
Gaussian noise term was assumed to be a good model. Parameters used in various
simulations are shown in Table 5.1.

Table 5.1: Simulation parameter sets

Simulation Projection number δ,×10−8 β,×10−10 OTF a, µm Noise STD
name: (per 180◦ scan)
weak phase 360 0.5 0.5 0 0
few projections 72 0.5 0.5 0 0
blur 360 0.5 0.5 3 0
noise 360 0.5 0.5 0 2e-3
strong phase 360 5 5 0 0
realistic 180 5 5 1 1e-2

Simulated data was treated by five different reconstruction techniques: sequential
approach (phase retrieval followed by the filtered back-projection), unconstrained
algebraic reconstruction based on (Equation 5.12) and three algorithms based on
TV minimization: full algebraic reconstruction - (Equation 5.12), algebraic tomo-
graphic reconstruction - (Equation 5.13), algebraic phase retrieval - (Equation 5.14).
A known Gaussian OTF was included in all algebraic reconstruction models in order
to achieve a sharper reconstruction. Reconstructions were performed on a 512 x 512
pixels grid in order to avoid boundary effects. The same stopping condition was
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used for all algebraic methods:

‖fj+1 − fj‖2

‖fj‖2 < 10−5. (5.20)

The weight of the regularization term λTV had to be adjusted depending on the
underlying linear system and the variance of the simulated data. Automated meth-
ods for determining the regularization parameters produce a wide spread of results
depending on the method [118]. In this work the regularization parameters were
selected empirically so, for a given combination of the linear model and the simula-
tion conditions, a solution with a small RMSE would be obtained. For full algebraic
reconstruction λTV varied in the range from 10−7 (for the “blur” simulation) to 10−5

(for the “strong phase” and “realistic” simulations). For algebraic tomographic re-
construction λTV was in the range from 10−10 to 10−8. And for algebraic phase
retrieval we used λTV ranging from 10−4 to 10−2. The constant parameter ε was set
to 104 m−1 for simulations with small errors (“weak phase”, “few projections” and
“blur”) and 105 m−1 for simulations with large errors (“strong phase”, “noise” and
“realistic”). Figure 5.3 illustrates the error magnitude associated to the resulting
reconstructions. The corresponding Root Mean Square Error (RMSE) can be found
in Table 5.2.

Table 5.2: RMSE for six different simulations (rows) and five reconstruction algo-
rithms (columns).

Resonstruction: TV minimization
sequential algrebraic algebraic algebraic algebraic

Simulation: recon. unconstr. recon. full recon. tomography phase retr.
weak phase 0.043 0.031 0.003 0.021 0.043
few projections 0.113 0.113 0.010 0.027 0.109
blur 0.076 0.072 0.051 0.082 0.063
noise 0.112 0.084 0.043 0.040 0.047
strong phase 0.057 0.070 0.029 0.045 0.046
realistic 0.072 0.085 0.048 0.050 0.061
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Figure 5.3: Reconstructions of the simulated data (error magnitude). Columns
correspond to the reconstruction methods: sequential, unconstrained algebraic,
full algebraic, algebraic tomographic reconstruction and algebraic phase retrieval.
Rows correspond to the different simulations: weak phase, few projections, blur,
strong phase, noise, realistic.
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5.4 Experiments

In this section we are presenting some preliminary results of the full algebraic re-
construction and the algebraic phase retrieval methods applied to an experimental
X-ray PCT dataset. The data was collected at the beamline ID11 of the European
Synchrotron Radiation Facility (Grenoble, France). The tomographic scan was ac-
quired in-situ for spherical polycrystalline copper (Makin Metal Powders (UK) Ltd.,
diameter 50 µm) during sintering at 1050◦C. The specimen was placed in a quartz
capillary with a 500 µm internal diameter. During the experiment gas shielding
(argon: 98% and hydrogen: 2%) was applied. The scan was performed in a continu-
ous 180◦ mode with 650 projections. Phase-contrast images were acquired using an
X-ray beam with a mean energy E = 40 KeV (∆E/E = 10−3), a source to object
distance of 96 m and a propagation distance of 25 cm. The size of each image was
512 x 256 pixels with a pixel size of 1.4× 1.4µm2.

We compared the standard sequential reconstruction employing L2-regularization
with the proposed algebraic methods based on TV-minimization. Figure 5.4 shows
the results obtained using three different reconstruction techniques: sequential ap-
proach, full algebraic reconstruction, and algebraic phase retrieval. All reconstruc-
tion techniques were applied to the complete dataset of 650 projections and a sub-
set of only 65 projections. The red line on Figure 5.4 shows the position of the
attenuation profiles that are depicted in Figure 5.5. In the sequential approach L2-
regularization was used during the phase-retrieval, while the algebraic phase retrieval
and the full algebraic reconstruction were performed using a three-dimensional
FISTA-based TV minimization with non-negativity constraint. A Gaussian OTF
was added to the CTF model in order to account for blurring with FWHM of 4.95
µm. We varied the number of iterations depending on the rough estimate of the
convergence speed of a particular algorithm. In full algebraic reconstruction we used
2000 iterations. In algebraic phase retrieval based on 650 tomographic projections
300 iterations were used. Two times more iterations were used in both approaches
when applied to 65 tomographic projections.
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Figure 5.4: X-ray PCT reconstruction of the glass capillary filled with copper
spheres (slice from the middle of the volume). Reconstructions based on 650
projections: (a) - sequential approach based on L2-regularized phase retrieval, (c) -
full algebraic reconstruction, (e) - algebraic phase retrieval. Reconstructions based
on 65 projections: (b) - sequential approach, (d) - full algebraic reconstruction,
(f) - algebraic phase retrieval. Red line shows position of the profiles depicted on
the next figure.

5.5 Conclusion

The results of reconstructions for the simulated data (Figure 5.3) demonstrate that
a TV minimization approach can yield a nearly flawless tomographic reconstruction
based on a single distance X-ray PCT data (full algebraic reconstruction applied
to the weak phase case). In most of the demonstrated examples the full algebraic
reconstruction approach outperforms the other two approaches: the algebraic tomo-
graphic reconstruction and the algebraic phase retrieval.

However, there are certain cases where the technique will not work so well. The
algebraic tomographic reconstruction method clearly fails in the case with strong
blur applied to the simulated data. That is an expected outcome since the blur
is not included in the linear system that is solved algebraically. The algebraic
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phase retrieval method is failing in the case that the dataset contained only a few
projections. It is also expected since the back-projection sub-problem is not solved by
the algebraic algorithm but calculated once using filtered back-projection. However,
given the advantages of the full algebraic reconstruction, it also suffers from certain
disadvantages - it is the most computation-intensive of the methods proposed in this
article. It also is likely to converge slower than the other two in terms of the number
of iterations.
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Figure 5.5: Attenuation profiles of the copper sphere and the quartz wall for differ-
ent reconstruction algorithms. (a) Reconstruction based on 650 projections; (b)
reconstruction based on 65 projections.

All reconstructions in this paper were applied to the data (recorded as well as sim-
ulated) of objects that comply with the assumption of sparsity, i.e. objects with a
piece-wise constant attenuation. Other studies show that TV minimization can im-
prove the accuracy of the reconstruction of images that are not strictly sparse [108].
Further investigation should be carried out in order to test the applicability of the
Phase Retrieval Tomography based on TV minimization to non-sparse objects, such
as those encountered in soft-tissue imaging.

In the current study we investigated a simple case of tomographic reconstruction for
parallel beam geometry combined with a single-distance CTF phase-retrieval model.
This combination represents a linear inversion problem, so algebraic reconstruction
algorithms can be applied to solve it with minimal adjustments. However, there are a
large number of variations to the proposed technique that can be considered during
further investigation. A generalized description of the central slice theorem for
fan-beam or cone-beam geometries [119, 120] should allow extension of the current
approach to these geometries. Some of the phase retrieval models other than the
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CTF model can be easily incorporated into an algebraic reconstruction similar to
the two-dimensional phase retrieval in [97]. Specifically, the problem of tomographic
reconstruction based on a multi-distance CTF model [47] remains linear, whereas
incorporation of the so called mixed phase retrieval [50] will require solving a non-
linear problem.

The experimental data was recorded during an in-situ sintering experiment during
which acquisition at shorter propagation distance or in attenuation-contrast mode
was not possible. Taking into account that the specimen yields strong attenuation
and rapid phase variations, this imaging regime leads to significant artifacts when
linear phase retrieval or no phase retrieval is used for tomographic reconstruction.
However, it seems that the use of TV minimization with a non-negativity constraint
leads to a solution with visibly higher contrast and sharper boundaries. A fur-
ther development of algebraic techniques may facilitate more accurate tomographic
reconstructions based on experimental data acquired under similar (suboptimal)
conditions.

Another important result is the full algebraic reconstruction based on fewer projec-
tions. It can be seen, that this method allows to reduce the artifacts significantly
in reconstruction based on a limited number of projections. Both results can justify
the high computational cost of the proposed algebraic algorithms in applications
where the acquisition time and the radiation dose are highly restricted.
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6 In-situ imaging of a solid-state
phase transformation with x-ray
Phase Contrast Tomography

Abstract1

The theory of diffusional solid-sate phase transformations plays a crucial role in un-
derstanding the evolution of the microstructure during processing of metals, which
influences the properties of metallic alloys. Using propagation-based x-ray Phase-
Contrast Tomography (PCT) we have obtained the first series of three-dimensional
reconstructions of the evolution of the morphology of individual interfaces between
ferrite and austenite grains during the ferrite-to-austenite phase transformation in
steel. The tomographic data was acquired within a time span of approximately 150
minutes and with a time resolution of approximately 9 minutes per dataset and a
spatial resolution of 1 µm3. During this time span, the temperature of the specimen
was increased from 800◦C to 900◦C. The ferrite-to-austenite phase transformation
took place between 860◦C and 890◦C. While state-of-the-art phase-field simulations
only predict the formation of curved interfaces between ferrite and austenite, the
experiments reveal the presence of large planar interfaces, some of which are immo-
bile during most of the phase transformation. This phenomenon is thought to be
related to special crystallographic orientation relationships between the parent and
product grains.

1This work is currently in preparation for publication in a journal: A. Kostenko, R. Huizenga, A.
King, W. Ludwig, L. J. van Vliet and S. E. Offerman, “In-situ investigation of the evolution of
the 3D-morphology of moving interfaces between individual grains of ferrite and austenite”.
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Chapter 6
In-situ imaging of a solid-state phase transformation with x-ray Phase Contrast

Tomography

6.1 Introduction

Modern society is fully dependent on the affordable design and production of ma-
terials for high-tech industries such as aerospace, power production, electronics,
transport, consumer goods and many others. Considering the increasing levels of
consumption in the developing countries, the growing human population, and the
diminishing availability of high-grade ores, the development of affordable metallic
alloys with advanced properties becomes especially important. The key to the af-
fordable production of metals is in controlling the evolution of the microstructure
during the processing of metals.

Diffusional solid-sate phase transformations take place during the production pro-
cesses of important metals, e.g. steel, titanium and magnesium-lithium alloys. Dur-
ing these phase transformations, grains of the product phase nucleate and grow
within the parent phase. The kinetics of these processes have been studied for more
than 60 years, which resulted in a large number of different theoretical models [121].
However, experimental validation of these theories has been limited until today, lab-
oratory experiments only provided information on the average growth rate of the
product grains [121]. The advent of third-generation synchrotron facilities opened
the opportunity to study the growth kinetics of individual grains during diffusional
solid-state phase transformations by observing the evolution of the volume of indi-
vidual grains [46]. However, direct experimental observations of the 3D-morphology
of moving interfaces between phases during diffusional solid-state phase transfor-
mations have not been reported in the literature up to now. The experimental
investigation that comes closest to studying the evolution of the 3D-morphology
of individual interfaces is the study by Schmidt et al. [122] during interrupted
recrystallization in aluminum. This study was non-destructive in nature, but the
measurements were made ex-situ due to the long acquisition times that are currently
inherent to three-dimensional x-ray diffraction microscopy.

The goal of the current investigation is to study the evolution of the 3D-morphology
of individual interfaces between the product and parent phases during a diffusional
solid-state phase transformation in metals. We focused on visualizing the motion of
the interfaces between austenite (gamma-iron) and ferrite (alpha-iron) grains during
ferrite-to-austenite phase transformation in steel. Such an investigation requires a
non-destructive imaging technique capable of acquiring real-time observations and
a computational approach to obtain a 4D reconstruction of the process (xyzt).

92



6.2 Materials and methods

The density difference between austenite and ferrite is too small to be detected by
conventional x-ray attenuation-contrast tomography. A 3D-reconstruction of the mi-
crostructure at the level of individual grains can be measured by three-dimensional
x-ray diffraction (3DXRD). However, this technique requires very long acquisition
times (typically 10 hours) and is currently limited in spatial resolution (typically 5
micrometers). In order to detect very small density differences between two materi-
als, propagation-based PCT has been successfully used to study microstructures in
metals [45]. Previously, we obtained a three-dimensional reconstruction of large ce-
mentite structures within a volume of ferrite in steel using propagation-based x-ray
PCT [97]. The typical time needed for acquisition of the tomographic PCT dataset
at the materials science beamline ID11 of the European Synchrotron Radiation Facil-
ity (ESRF) in Grenoble (France) was on the order of 30 minutes [97]. In the current
work we managed to reduce the acquisition time to approximately 9 minutes. This
opens the opportunity to study the evolution of the 3D-morphology of individual
interfaces between ferrite and austenite grains during the ferrite-to-austenite phase
transformation during slow heating by means of PCT.

6.2 Materials and methods

6.2.1 Material and experimental setup

We studied hypoeutectoid steel with the following chemical composition (in wt%):
0.099 C, 0.98 Mn, 0.10 Nb, and the balance is Fe. Figure 6.1 shows the optical
microscopy image of the ferrite grains in the material of the specimen before it was
used in the experiment. The temperature range during which the austenite and
ferrite phases for this composition co-exist, is calculated to be between A1 = 832◦C
and A3 = 869◦C assuming ortho-equilibrium conditions and using the computational
thermodynamics Thermo-Calc Software (Stockholm, Sweden). From dilatometry
measurements and studies based on 3DXRD data [123], it is evident that during
the phase transformation, 80% of ferrite is transformed into austenite within a short
temperature range between 865◦C and 870◦C (heating rate of 2◦C/min).

To avoid oxidation at high temperatures, the steel samples were placed into quartz
tubes with an outer diameter of Ø3 mm and a wall thickness of 0.5 mm (see
Figure 6.2). The tubes had a thicker (Ø6 mm) part, so they could be connected to
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Figure 6.1: An optical microscope image of the ferrite grains within the investigated
material.

a vacuum pump. The tubes were purged several times by applying vacuum of 10−4

mbar followed by letting helium in at 0.2 bar. After purging, the quartz tubes were
filled with 0.2 bar helium and sealed by melting the thicker section of the tube. He-
lium was introduced under low pressure at the room temperature to make sure that
the pressure inside the tube will not significantly exceed the atmospheric pressure
when heat is applied.

In order to perform a series of in-situ experiments with working temperatures in
the range from 700◦C to 900◦C we designed a miniature furnace that can be easily
installed or removed without touching the sample (see Figure 6.2). This furnace per-
mits a very flexible experimental geometry with object-to-detector distances down
to about 10 mm (or less in case the furnace is removed). The furnace was made
from an alumina tube with an Ø8 mm outer diameter and a 1 mm wall thickness.
A nickel coil with a wire diameter of Ø0.2 mm was winded around the outer surface
of the tube and isolated by using high temperature cement. Two round windows
were drilled in the wall of the tube to avoid attenuation of both the incoming x-ray
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Figure 6.2: Sample mounting and the
mini-furnace. The sample is mounted
inside the top section of a sealed quartz
tube. The tube is filled with helium to
prevent oxidation of the sample at high
temperatures. During the experiment
the top section of the quartz tube is in-
serted into an open design mini-furnace.

beam and the Bragg diffraction from the specimen up to 2Θ-angle of 45◦.

A thermocouple was attached to the top end of the alumina tube. The furnace
was mounted on a motorized translation stage, so it could be moved up and down
along the sample’s rotation axis in a controlled fashion. The temperature inside the
alumina tube was controlled using a Eurotherm (Invensys Eurotherm, The Nether-
lands) connected to the thermocouple in the top of the tube. In order to reach
900◦C, a power of about 90 W was needed.

The samples were manufactured in a needle-shaped fashion (~ Ø0.1-0.5 mm and 2
mm long) in order to permit a 360◦ tomographic acquisition using a relatively low-
energy x-ray beam. The mean x-ray energy was set to 34.6 KeV, a higher energy
would yield a weaker phase-contrast effect. The base of the needle has a diameter
of 1.9 mm, which was glued to the top of a thin section of the quartz tube using
high temperature cement. In this way, the thicker part of the quartz tube could be
mounted to the rotation stage and the sample could be suspended in the top part
of the tube, see Figure 6.2. In this setup, flat-field images can easily be acquired
during PCT by either removing the quartz tube with the sample completely out
of the field of view or moving it up inside the furnace, so the x-ray beam can pass
through the empty part of the quartz tube (the latter approach was used in the
current experiment).

The geometry of the PCT acquisition setup is depicted in Figure 6.3, as constructed
at the materials science beamline ID11 of the European Synchrotron Radiation Fa-
cility (ESRF) in Grenoble, France. To perform a time-dependent in-situ experiment,
one needs to achieve the highest possible flux to limit the time needed for the PCT
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Figure 6.3: Acquisition geometry. Pinhole monochromator yields a “pink beam”
with high brightness. One of the two detectors can be used at a time: the high-
resolution near-field detector for PCT, the medium-resolution far-field detector
for XRD acquisition.

acquisition performed at each stage of the phase transformation. In order to do
so we used a pinhole monochromator instead of the conventionally used crystal or
multilayer monochromator. A transfocator (compound refractive lens) was used to
focus x-rays with an energy of 34.6 KeV at the pinhole that was placed in the opti-
cal hutch of the beamline. As the transfocator optics are chromatic, a broad band
pass ("pink beam") monochromator can be constructed using a pinhole as shown in
Figure 6.3. A slit that is placed after the pinhole is needed to block the central,
unfiltered part of the beam. The bandwidth of this system was measured to be 0.5
KeV (FWHM) or ∆E/E = 1.4 · 10−2, yielding two orders of magnitude higher flux
in comparison with the Laue-Laue crystal monochromator. This allowed us to limit
the exposure time to 0.2 sec per image. However, the full acquisition time was ~0.7
sec per image (including the CCD readout time) or 5 minutes and 53 seconds for
360° tomographic acquisition. An additional 2 minutes and 45 seconds were spent
on the acquisition of dark- and flat-field images between the subsequent scans.

Figure 6.3 shows that the sample was placed at approximately 96 m from a 57×10
µm (H×V) undulator x-ray source and 48 m from the focal spot of the transfoca-
tor. A thin film scintillator, optically coupled to the FreLoN 4M CCD detector,
was placed at a distance of 158 mm from the sample. Optical coupling with 25x
magnification resulted in an effective pixel size of 0.96 µm. Each tomographic ac-
quisition consisted of 500 projections that were acquired with uniform spacing in
360◦ angular range. The detector area of 640 x 470 pixels was illuminated by the
x-ray beam resulting in a reconstructed volume of the sample of approximately 600
µm in height and 300 µm in diameter.
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A FreLoN-based taper-coupled large area detector was placed at 310 mm behind the
sample to collect the X-ray Diffraction (XRD) signal which was used to calibrate
the exact temperature of the sample. During calibration, the phase transformation
temperature was determined by comparing the XRD signal with 3DXRD results
presented in [123]. Based on this comparison we found that the sample temperature
Ts at the position of the x-ray beam is 110◦ higher than the temperature of the
furnace wall Tf measured by the thermocouple.

During the in-situ PCT acquisition the sample was heated from Ts = 810◦C to
Ts = 860◦C at a rate of 10◦C/min and from Ts = 860◦C to Ts = 900◦C at a rate of
0.278◦C/min. Each tomographic scan (including acquisition of flat-field images at
the beginning and at the end of the scan) took 8 min and 38 seconds. During each
tomographic scan that took place above Ts = 860◦C, the temperature increased by
2.4◦C.

6.2.2 Image reconstruction

(a) (b) (c)

Figure 6.4: Processing of the phase-contrast data. (a) - FBP applied to the raw
phase-contrast sinogram; (b) – FBP after correction of ringing artifacts; (c) – the
reconstruction based on algebraic phase retrieval.

The phase-contrast tomographic data acquired during the experiment was pre-
processed using the standard dark-field and flat-field correction [105]. Fast vari-
ations of the x-ray beam intensity were corrected in each individual phase-contrast
image by subtracting the average intensity of the pixels that lay outside of the spec-
imen. In propagation-based x-ray PCT each observed image can be interpreted as a
sum of attenuation-contrast and phase-contrast effects. In conventional attenuation-
contrast imaging the observed image I(x, y) is formed according to the Beer-Lambert
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law:

I(x, y) = I0e
−2µ(x,y),

where I0 denotes the intensity of the incoming x-ray beam (uniform intensity) and
µ(x, y) stands for the projected attenuation of the specimen. After computing the
projected attenuation µ(x, y) for each tomographic orientation, a tomographic recon-
struction of object’s three-dimensional attenuation index can be calculated. How-
ever, changes in the attenuation index, might be too small to detect the structures
that correspond to small variations in density or chemical composition of the speci-
men. Such structures can often be detected using phase-contrast imaging. To a first
approximation, the images observed using propagation-based phase-contrast imag-
ing are proportional to the Laplacian (second derivative) of the specimen’s projected
electron density [49]. One of the most simple approximations of the phase-contrast
image is given by [52] for homogeneous objects:

I(x, y) = I0(1− aλR∇2)e−2µ(x,y),

where a is a constant that characterizes the magnitude of the phase-contrast effect
for the given material and x-ray energy, λ denotes the wavelength of x-ray beam, R is
the object-to-detector distance in a parallel beam geometry, and ∇2 is the Laplacian
operator. Unfortunately, all phase retrieval techniques for homogeneous objects
[52, 53, 54] rely on approximations (such as limited or slowly varying attenuation)
which break down around the steel-air boundary. That leads to artifacts in phase
retrieved images localized at the outer boundary of the specimen and in the vicinity
of the gas pores present in the bulk.

Experimental data acquired using propagation-based PCT is sometimes processed in
the same way as attenuation-contrast tomography - by direct application of filtered
back-projection (FBP). A horizontal slice of the specimen reconstructed using this
approach is shown in Figure 6.4(a,b). However, to obtain a correct representation of
the specimen’s attenuation (and hence density), tomographic reconstruction must
be combined with phase retrieval. To compute tomographic reconstructions of the
specimens attenuation (Figure 6.4(c)) we used the algebraic phase retrieval approach
that we reported previously in [106]. We used a 3D analysis software package Amira
(VSG, FEI Company) to perform segmentation of the reconstructed attenuation
volume. The segmented data was used to produce a three-dimensional rendering of
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the austenite structure (Figure 6.6).

1

22

1

3

2

3 3

(t1)- 860ºC (t2)- 863ºC (t3)- 865ºC

(t4)- 867ºC (t5)- 871ºC (t6)- 874ºC

Figure 6.5: Time-lapse PCT (no phase retrieval) of the ferrite-austenite phase
transformation. Growth of the austenite grains in the bulk of ferrite is visible at
the time points t1, t2 and t3. At the time points t4, t5 and t6 only small amounts
of ferrite that remains after the phase transformation can be seen. Grains marked
as (1) form an interconnected network at t3 (see in 3D on (Figure 6.8)). A single
austenite grain (2) demonstrates an immobile interface (see in 3D on (Figure 6.7))
which can also be observed at time points after t3 due to a small amount of ferrite
remaining next to it (3).

6.3 Results and discussion

Figure 6.5 shows FBP reconstructions of a single horizontal slice through the object
from the data recorded in-situ during the heat treatment. Time points t1-t6 cor-
respond to the average specimen temperaure in the range from Ts = 860◦C (time
point t1) to Ts = 874◦C (time point t6). Due to the phase-contrast effect, interfaces
between the austenite grains and the surrounding ferrite can be clearly seen on the
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first three subfigures (Figure 6.5(t1, t2, t3)). They correspond to the first 28 minutes
and 32 seconds of heat treatment during which the average temperature increased
by 7.2◦C. The last three subfigures (Figure 6.5 (t4, t5, t6)) show that the specimen
contains very small amounts of ferrite that remains after the phase transformation.
The smallest traces of ferrite can still be observed in reconstructions that correspond
to an average sample temperature of 889◦C or approximately 100 minutes from the
start of the phase transformation.

Although the temperature of the furnace followed the programmed value, it showed
fast oscillations with a standard deviation of ~ 1.5◦C. In addition to that, during
each flat-field acquisition, the sample had to be vertically moved by 2 mm inside
the furnace, which resulted in an increase of the sample temperature due to the
thermal gradient within the furnace. We estimate that the temperature of the sam-
ple could increase 10◦C between the subsequent tomographic acquisitions. Recon-
structions computed using only half of each tomographic dataset (in 180◦ angular
range) confirm that during each acquisition, the amount of austenite increases only
by a very small fraction, while the subsequent acquisitions show that the fraction
of the austenite increases by an order of magnitude. Most likely, the majority of
the ferrite was rapidly converted to austenite during flat-field acquisition after t3
(Ts = 865◦C). The subsequent time point t4, acquired at an average temperature
Ts = 867◦C, shows that the sample consists mainly of austenite.

Figure 6.6 shows a three-dimensional rendering of the austenite grains in the begin-
ning of the phase transformation and the remaining ferrite at the end of the phase
transformation. Growing austenite grains are shown in green (Figure 6.6(t1, t2,
t3)). The austenite grains painted in blue and red colors are visualized separately in
Figure 6.7 and Figure 6.8. Interfaces shown in purple color correspond to the ferrite
that remains at the end of the phase transformation (Figure 6.6(t4)). The austen-
ite volume fraction can be calculated from the segmented data and correspond to
0.01%, 0.12%, 3.9% and 99.6% (Figure 6.6(t1, t2, t3)).
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(t1) - 860ºC (t2) - 863ºC

(t3)- 865ºC (t4) - 867ºC

Figure 6.6: 3D rendering of the ferrite-austenite interfaces during the heat treat-
ment. Austenite grains are shown in green (t1)-(t3); ferrite remaining after phase
transformation is shown in purple (t4). A grain displayed in blue demonstrates
an immobile interface (shown in Figure 6.7). Several austenite grains that form
an interconnected cluster at t3 are shown in red (shown in Figure 6.8).

Comparison of the tomographic reconstructions, that correspond to the time points
from t1 to t4, allows to make some unique observations related to the kinetic prop-
erties of the austenite grain growth. The state-of-the-art 3D phase-field simulations
[124] only predict the formation of curved interfaces between ferrite and austenite.
However, it appears from the time point t3 that most of the surface of the grow-
ing austenite grains is represented by either large relatively planar interfaces with
sharp edges or more irregular surfaces that usually comprise several smaller flat ar-
eas (Figure 6.6). Comparing the positions of the interfaces of the austenite grains
at the time points t1 − t3 and the positions of the remaining ferrite at t4 we can
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conclude that there is a significant number of interfaces that remain immobile during
the phase transformation. We estimated that about one third of the total number
of grains (or interconnected clusters of grains) at t3 show the presence of at least
one immobile interface. Toal area of the immobile inerfaces that can be directly
detected from the available data at t3 amounts to approximately 5%. Obviously
only a fraction of the immobile interfaces can be directly detected by comparing
only a few time points which decribe rapidly changing grains. We expect that when
the detected immobile interface belongs to a larger planar surface, the whole planar
surface should be assumed immobile. In that case, we can estimate the surface of
immobile interfaces to be about 15-20% of the total surface of the grains at t3.

(t1) - 860ºC (t2) - 863ºC

(t3)- 865ºC (t4) - 867ºC

Figure 6.7: Demonstration of an immobile interface during the growth of an austen-
ite grain (a)-(c). (d) – ferrite grain structure that remains adjacent to the immo-
bile interface at the end of the phase transformation.

An example of an immobile interface is visualized in 3D in Figure 6.7 and can be
seen in crossection in Figure 6.5 (it is marked with a red arrow with a label ’2’). It is
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evident that when the temperature increases, the austenite grain grows only on one
side of the planar interface (Figure 6.7 (t1, t2, t3), while a small amount of ferrite
remains on the other of the interface when the transformation is almost complete
(Figure 6.7(t4)).

A formation of a large cluster of interconnected austenite grains is shown in Figure 6.8.
The same grains are marked with a red arrow and a label ’1’ in Figure 6.5. This
cluster of austenite grains also demonstrates a large number of planar interfaces.
Moreover, Figure 6.8 suggests that individual austenite grains grow along particular
preferred directions which results in larger interconnected clusters than one would
expect after assuming isotropic growth. We believe that both effects, the presence
of the preferred growth directions and the planar interfaces, can be explained by the
two following mechanisms. Firstly, the growth of the austenite along ferrite/ferrite
grain boundaries might be faster due to higher diffusion rates in the vicinity of
the grain boundary. Secondly, the growth of the austenite grain can be affected
by specific crystallographic orientation relations between the austenite and the sur-
rounding ferrite. According to Gottstein and Shvindlerman [125] planar interfaces in
single-phase materials are likely to be less mobile due to crystallographic orientation
relations between neighboring austenitic and ferritic grains.

(t1) - 860ºC (t2) - 863ºC (t3)- 865ºC

Figure 6.8: Demonstration of austenite grain growth and cluster formation (shown
on Figure 6.6 in red).

6.4 Conclusions

We have presented the first 4D reconstruction of the evolution of the three-dimensional
morphology of individual interfaces between ferrite and austenite grains during the
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ferrite-to-austenite phase transformation in steel. Propagation-based x-ray PCT was
used to acquire the data needed for the full three-dimensional reconstruction of the
cylindrical specimen of approximately 600 µm height and 300 µm in diameter with
a spatial resolution of approximately 1 µm3 and a temporal resolution of around 9
minutes. The experiment was conducted in-situ, while the sample was heated from
860◦C to 900◦C at a rate of 0.278◦C/min.

From the point when the first grains of austenite can be detected, till the moment
when ferrite becomes undetectable, the temperature changed almost as much as
50◦C. However, the majority of ferrite is transformed into austenite when the average
temperature of the sample changes within approximately 5◦C range. Although the
temperature may have been changing by as much as 10◦C for a short time between
the consecutive tomographic acquisitions. Based on the experimental data, we made
several observations of features that are not predicted by state-of-the-art phase-field
simulation models. Reconstructions show the presence of a large number of planar
interfaces, some of which remain immobile during the phase transformation. We
hypothesize that this feature of the interface morphology and kinetics is related
to the particular crystallographic orientation relationships between the ferrite and
austenite grains.

6.5 Recommendations

The results shown in this paper demonstrate how propagation-based x-ray PCT can
be used for in-situ imaging of the ferrite-austenite interfaces during the phase trans-
formation. A compact heating system allows to use a high resolution detector at a
very short distance from the sample if needed. The spatial resolution achievable at
the ID11 beamline is sufficient for the detection of the product phase grains at early
stages of growth (either austenite or ferrite of ~ 3 µm in size). However, the tem-
poral resolution remains relatively low. We believe that due to the relatively simple
geometry of the grain interfaces, their position can be determined with submicron
accuracy, provided that they would not move during the acquisition. However, due
to the motion of the interfaces, the accuracy of their determination will strongly
depend on the acquisition time.

In order to decrease the acquisition time and hence improve the temporal resolution
of the imaging system, several changes can be implemented. By using the FreLon 2K
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camera it is possible to reduce the readout time to 50 ms per frame (500 ms in our
experiment). Also, the exposure time (current value is 200 ms) can be significantly
reduced by improving the optical coupling between the scintillator and the FreLoN
4M CCD. The flat-field and dark-field images can be acquired less often, as long as
it is possible to estimate the changes in the flat-field using intensity values from the
parts of the CCD that are not attenuated by the specimen. By implementing these
improvements it could be possible to reduce the acquisition time to 1-2 minutes per
tomographic scan.

Apart from adjusting the hardware, there are several other ways to overcome the
limited temporal resolution. Firstly, a specimen with different composition can be
used to slow down the phase transformation time or to stabilize the phase trans-
formation for the duration of the acquisition. Secondly, it should be possible to
change the acquisition protocol to a faster one with less tomographic projections
per dataset. Algebraic reconstruction algorithms of the type that was proposed by
us in [126] may allow to reduce the amount of experimental data needed for accurate
reconstruction dramatically.

The experimental setup presented in this paper can be significantly improved in
order to achieve better temperature control and robustness of the heating system.
Using conductor or semiconductor ceramics (e.g. SiC, ZrO2 etc.) it should be
possible to construct an extremely compact heating furnace with an outer diameter
on the order of 5 mm and a working temperature above 1000◦C. Reducing the size
of the furnace will require smaller samples. This can be achieved by using samples
with a thick Ni coating which can prevent oxidation of the steel specimen in air for
few hours during the heat treatment [127]. Ni-coated samples will also allow an easy
attachment of the thermocouples directly to the sample which could provide very
robust control over the temperature. In addition, we recommend not to move the
specimen inside the furnace to avoid unnecessary temperature fluctuations.
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Conclusions

The main goal of this research is to develop a combination of tomographic reconstruc-
tion algorithms and experimental data-acquisition methods for propagation-based
Phase-Contrast Tomography that would allow to carry out state-of-the-art investi-
gations in the soft and hard condensed matter with improved spatial and temporal
resolutions. The experimental work that was carried out in the field of materials
science, demonstrated that propagation-based PCT provides a valuable tool for non-
destructive imaging of microstructural changes that occur in metals during various
production processes.

Novel X-ray sources: characterizing the MIRRORCLE-6X. Our first investiga-
tion, presented in Chapter 2, was aimed at the characterization of a novel X-ray
source based on the miniature synchrotron technology MIRRORCLE-6X. The main
motivation of this work was to test the suitability of this X-ray source for the devel-
opment of a laboratory propagation-based X-ray PCI system. During this project
we measured the phase-contrast enhancement of the imaging system based on the
MIRRORCLE-6X under various conditions. Certain properties of the system, such
as the X-ray spectrum of the source and the quantum efficiency of the detector, could
not be measured during the experiment and were calculated theoretically. Depend-
ing on the particular geometry of the propagation-based PCI system, the observed
contrast enhancement due to the phase-contrast effect, in comparison with the mea-
sured attenuation-contrast, was in the range from 100 to 200% . The predicted
value for contrast-enhancement based on the effective source size, was estimated
to be of several hundreds percent for the given experimental conditions. From the
analysis of the experimentally observed data and the results of the simulations, we
concluded that a major fraction of the radiation produced by the MIRRORCLE-6X
was generated by the components (glue and carbon wire) needed for mounting of
the X-ray target. This meant that an effective source size smaller than 40 microns
was not achievable in the MIRRORCLE-6X at the time of the experiment, which
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significantly reduced the spatial coherence of the X-ray source and hence the ob-
served phase-contrast effect. Improvements on the design of the mounig of the target
and on the focusing of the electron beam may lead to a significant increase in the
brilliance of the X-ray source and its suitability for PCI.

Cementite morphology The aim of the research described in Chapter 3 is to vali-
date the technique of propagation-based PCT for the study of the three-dimensional
mophology of cementite structures in steel using the golden standard of optical mi-
croscopy in combinations with serial sectioning. Formation of cementite takes place
during various production processes and has a profound influence on the mechanical
properties of steel. We used propagation-based PCT and a high-carbon steel speci-
men that contains large (� 10µm) cementite particles. We were able to obtain the
first reconstruction of the three-dimensional morphology of the cementite grains us-
ing a non-destructive imaging technique. In this work we compared several different
phase retrieval techniques and came to the conclusion that the linear phase retrieval
model proposed by Wu [54] for homogeneous objects was the most convenient one:
the specimen under investigation was nearly homogeneous (the phase to attenuation
ratio close to constant), which allowed us to reduce the number of phase-contrast im-
ages required for the reconstruction. Using this technique we obtained a tomographic
reconstruction of the cementite grains with a spatial resolution of approximately 1.5
µm within a large volume of steel (600× 400× 250 µm3). This reconstruction was
combined with data acquired in an X-ray Diffraction-Contrast Tomography (DCT)
experiment. X-ray DCT requires long acquisition times and yields relatively low res-
olution (~10µm), but allows to obtain highly relevant complimentary information
about the orientation of the atomic lattice of the ferrite grains that surround the
cementite. The results of both techniques were verified by optical serial sectioning
of the same specimen. Development of a non-destructive imaging technique, sensi-
tive enough to detect cementite microstructure, is needed in order to experimentally
observe the nucleation and growth of the cementite. Kinetics of this process has not
been studied in an in-situ experiment up to now. In Chapter 3 we have suggested
a number of improvements to the experimental approach that would allow to study
the formation and the evolution of cementite in-situ.

Algebraic phase retrieval The experimental work described in Chapter 3 inspired
us to investigate whether the image reconstruction techniques, that are used in the
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field of X-ray PCI and X-ray PCT, can be improved. We distinguished improve-
ments in terms of the accuracy of reconstruction and minimizing the amount of ex-
perimental data needed for reconstruction. State-of-the-art methods did not allow to
obtain an accurate (quantitative) tomographic reconstruction of the specimen based
on tomographic data acquired in x-ray phase-contrast mode. Instead, qualitative
reconstructions were often computed by applying a standard tomographic recon-
struction (i.e. filtered back-projection) to unprocessed phase-contrast data. Often,
experimental conditions that yield a lower phase-contrast effect were used in order to
reduce the artifacts that occur due to the fact that most of the phase retrieval mod-
els were intrinsically ill-posed. In Chapter 4 we propose a novel algebraic algorithm
for phase retrieval. This algorithm is based on Total Variation (TV) minimization
and can incorporate various phase retrieval models, such as TIE, CTF, Mixed TIE-
CTF [51] or their variations based on the assumption of phase-attenuation duality
[52, 53, 54] . Unlike the standard phase retrieval approach, which relies on L2 reg-
ularization, the algebraic phase retrieval based on TV minimization is capable to
recover the frequency bands of the solution that are either undefined by the linear
phase retrieval model or severely corrupted by noise. TV minimization is based on
the assumption that the reconstructed image has a sparse gradient magnitude (i.e.
it is piece-wise constant) and performs better when this condition is satisfied. How-
ever, the simulations showed that this method also improves the accuracy of phase
retrieval when the retrieved phase image is not strictly piece-wise constant. It can
also be seen that both the measurement errors (i.e. noise) and the systematic errors
related to non-linearity of the phase-contrast effect, can be effectively suppressed us-
ing algebraic phase retrieval based on TV minimization. Results of reconstructions
applied to experimental data confirm that algebraic phase retrieval can significantly
outperform the standard phase retrival based on L2 regularization. In particular,
these results demonstrate that, as long as the reconstructed image complies with the
assumption of sparsity, the number of phase-contrast images acquired at different
propagation distances to obtain artifact-free phase retrieval, can be decreased.

Algebraic Phase Tomography The main goal of the work described in Chapter 4
was to explore the applicability of algebraic reconstruction to phase retrieval. The
results of this investigation encouraged us to continue this work and to develop an
algebraic reconstruction algorithm for tomographic reconstruction based on phase
contrast data. The algebraic approach allows to combine phase retrieval and to-

109



Chapter 6
In-situ imaging of a solid-state phase transformation with x-ray Phase Contrast

Tomography

mographic reconstruction into a single linear inverse problem. We have assumed
that by solving the problem of phase retrieval and tomographic reconstruction si-
multaneously, a more accurate solution can be achieved.Chapter 5 describs three
variations of the algebraic reconstruction algorithm based on the TV minimization
approach developed for X-ray PCT: the full algebraic reconstruction, the algebraic
tomographic reconstruction and the algebraic phase retrieval. These algorithms are
compared with each other and with the standard sequential approach based on fil-
tered back-projection. The results show that under certain conditions, errors that
normally originate from artifacts related to phase retrieval can be virtually elim-
inated. Naturally, the accuracy of reconstruction depends on how much the ex-
perimental conditions comply with the assumptions underlying the reconstruction
algorithm. For instance, algebraic tomographic reconstruction yields poor accuracy
for resolution limited data and algebraic phase retrieval fails for datasets with a
small number of tomographic projections. In most of the reconstructions presented
in Chapter 5, the full algebraic reconstruction approach outperforms both the other
algebraic reconstruction techniques and the sequential reconstruction. Among all
of the proposed reconstruction techniques, the full algebraic reconstruction is the
most computationally intensive, requiring a large number of iterations to converge
and more computations during each iteration. We believe that this work demon-
strates the high potential of algebraic algorithms in applications where the experi-
mental conditions restrict the number of tomographic projections or the number of
phase-contrast images acquired per projection. It may also be the best choice when
experimental conditions do not permit measurements with high signal-to-noise ratio.

In-situ study of austenite The work that was started during our investigation of
the cementite morphology (see Chapter 2), was continued with the in-situ exper-
iments dedicated to imaging the microstructural changes that take place in steel
during a solid-state phase transformation (see Chapter 6). Using X-ray PCT, we
obtained the first reconstructions of the three-dimensional morphology of the grains
of the product phase (austenite) growing in the parent phase (ferrite) during the
ferrite-to-austenite phase transformation. A miniature furnace that was designed
for this experiment which allowed to perform a full 360◦ tomographic acquisition
with a minimal sample-to-detector distance of ~ 10mm while the sample is heated
up to a maximum temperature of 900◦C.

The X-ray PCT data was acquired while the temperature of the sample was slowly
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increased from 860◦C to 900◦C. This way we obtained a series of tomographic recon-
structions of the austenite grains during the phase transformation. The tomographic
data was obtained for a cylindrical specimen with a height of approximately 600 µm
and the diameter of 300 µm. The spatial resolution of the data was approximately
1µm3, while the temporal resolution was approximately 9 minutes. To obtain to-
mographic reconstruction of the austenite structure we applied the algebraic phase
retrieval algorithm proposed in Chapter 5. Reconstructions of the austenite struc-
ture demonstrate a large number of planar interfaces between ferrite and austenite.
Some of these interfaces remain immobile during the phase transformation. We
have concluded that this property of the grain growth should be related to the
specific orientation relationships between the lattices of ferrite and austenite. This
hypothesis has to be investigated in future studies using information about the lat-
tice orientations obtained using X-ray DCT or three-dimensional X-ray diffraction
(3DXRD).

Recommendations

Advancement in algorithms for phase retrieval and tomogramic reconstruction should
lead to a better accuracy of the tomographic reconstructions that can be obtained
from the experimental data and easier and faster data acquisition protocols. One
of the algebraic algorithms developed by us for tomographic reconstructions was
applied to improve the quality of the reconstructed data in the experimental study
dedicated to observations of the austenite grain growth during the phase trans-
formation. We believe that a similar algebraic algorithm could be used in order
to reconstruct the structure of the austentenite grains from a significantly smaller
number of tomographic projections. This would allow to increase the time resolution
of in-situ X-ray PCT proportionally to the reduction in the number of projections.
In order to achieve this, an algebraic reconstruction algorithm should be developed
for strongly attenuating specimens. We expect that this would require solving a
non-linear inverse problem. However, the linear approach that is described in Chap-
ter 4 and Chapter 5 provides insights to finding the solution for such a non-linear
minimization problem.

The algebraic reconstruction techniques described in Chapter 5 yield very high ac-
curacy for specimens that are composed of light elements. It is therefore most
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valuable for studies dedicated to biological specimens. In cases when the structure
of a typical specimen is sufficiently sparse, the full algebraic reconstruction approach
permits a significant reduction of the number of tomographic projections and hence
the dose delivered to the specimen. A large number of different versions of this
method can be easily derived in order to allow the use of different phase-contrast
models (for instance multi-distance CTF or TIE) or to permit reconstructions in
different acquisition geometries (for instance fan or cone beam).

Concerning further development of experimental techniques for materials science
investigations, there are a large number of improvements that can be made in order
to expand the capabilities of the experimental approach described in Chapter 3 and
Chapter 6. A significant increase in spatial resolution of the PCI system is absolutely
crucial for studying the formation and evolution of cementite. Observing the early
stages of cementite formation, when the typical size of a cementite particle stays
in the range between tens and hundreds on nanometers, would be more valuable
for materials science than the observations made at the later stages of cementite
growth. Currently, the spatial resolution of < 200 nm can be achieved in magnified
holotomography (i.e. propagation-based PCT) experiments at the ID22 (Micro-
Fluorescence, Imaging and Diffraction) beamline of ESRF [128]. However, imaging
at such a resolution may require small sample size (< 100 µm) and the grinding
technique that was used to manufacture samples in the current project might not be
suitable. Instead, an electrochemical etching could be used in order to manufacture
specimens smaller than 100 µm. It should be also taken into account that the object-
to-detector distance suitable for imaging with sub-micron resolution at low energies
might significantly limit the maximum furnace size for the in-situ experiment.

Chapter 6 contains a detailed description of the improvements that are required to
further improve in-situ investigations of the austenite grain growth. We stated there,
that through the optimization of the experimental conditions at the ID11 beamline
of ESRF, it is possible to perform a time-resolved tomographic acquisition of the
austenite-ferrite phase transformation with a time resolution of about 1 to 2 minutes.
Perhaps another order of magnitude improvement in time resolution is possible,
given that the number of projections required for the accurate reconstruction can
be reduced after implementing an algebraic reconstruction algorithm suitable for
strongly attenuating specimens. An experimental approach based on X-ray PCT
performed with high spatial and temporal resolution can find applications in a large
variety of studies of processes related to solid-state phase transformations in metals.
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Summary

Phase-Contrast Tomography (PCT) is becoming an important technique for non-
destructive, in-situ characterization of soft and hard condensed matter. This thesis
sheds light on our progress in developing novel tomographic reconstruction algo-
rithms in combination with in-situ experimental approaches that employ propagation-
based PCT. These developments are aimed to improve the spatial and temporal
resolutions of in-situ studies of the soft and hard condensed matter.

The mechanical properties of materials such as steel are, to a large extent, defined
by its microstructure. Propagation-based PCT (i.e. holotomography) can be used
to visualize the microstructures associated with small variations in density or com-
position in the bulk of the specimen. This imaging technique has the advantage of
being non-destructive and allows to carry out in-situ, time-resolved observations of
miscrostructural changes during dynamic processes such as solid-state phase trans-
formations. Sufficient spatial and temporal resolution can be achieved only when an
extremely bright x-ray source is used. In order to test whether a novel table-top x-
ray source, the MIRRORCLE-6X, can be used for implementation of a propagation-
based PCT system, we have carried out a series of experiments. The characteristics
of a propagation-based PCI system that employs the MIRRORCLE-6X were ana-
lyzed and reported in [66].

In our further research we have focused on the experiments that could be performed
at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. We
reported on the investigation of the cementite microstructure in carbon steel [97].
In this work we present the reconstruction of the three-dimensional morphology of
cementite grains in the bulk of steel using a non-destructive imaging technique –
x-ray Phase-Contrast Tomography (PCT). Complementary information about the
crystalline structure of the ferrite grains surrounding the cementite is obtained using
x-ray Diffraction-Contrast Tomography (DCT) [105]. The work was continued by
a time-resolved x-ray PCT investigation of the austenite grain growth during the
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ferrite-to-austenite phase transformation in low-carbon steel. Experimental data al-
lows to visualize the evolution of the three-dimensional morphology of the austenite-
ferrite interfaces with a spatial resolution on the order of 1 µm and a time resolution
of less than 9 minutes. The in-situ measurements show that the theory for grain
growth during diffusional solid-state phase transformations needs to be extended in
order to describe the drastically lower mobility that we observed for flat interfaces
compared to curved interfaces. We observe that some flat interfaces are completely
immobile, which is not predicted by the state-of-the-art theories and showed - for
the first time - that new computational model for grain growth are needed.

Quantitative image reconstruction based on PCT data requires solving two inverse
problems: phase retrieval and tomographic reconstruction. In most cases, the prob-
lem of phase retrieval is ill-posed and requires that some type of a prior knowledge
about the reconstructed image (i.e. particular regularization method) is used. We
present a novel algebraic approach suitable for phase retrieval using various linear
models (published in [106]). In this approach Total Variation (TV) minimization is
used for regularization of the linearized inverse problem by promoting the solution
with a sparse gradient magnitude (i.e. piece-wise constant solution). In that case
prior knowledge about the reconstructed image may allow to (partially) recover the
unknown spatial frequencies that are undefined by the experimental data. The prob-
lem of tomographic reconstruction based on PCT data can be solved using a similar
approach. We conclude our investigation of the image reconstruction algorithms
by introducing several algebraic approaches suitable for tomographic reconstruction
based on PCT data (published in [126]). In these approaches TV minimization is
used to find a regularized solution to an underdetermined linear system based on a
linearized representation of the PCT. When the density of the reconstructed object is
piece-wise constant (or close to it) a virtually artifact-free solution can be computed
for the tomographic problem. The proposed approach can also be used to radically
improve the accuracy of the tomographic reconstruction based on incomplete data
(e.g. small number of projections) or data with low signal to noise ratio.
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