
DIPlib Programmers Guide

dr. ir. Geert M. P. van Kempen

dr. ir. Michael van Ginkel

dr. ir. Cris L. Luengo Hendriks

prof. dr. ir. Lucas J. van Vliet

Quantitative Imaging Group,
Department of Applied Sciences, Delft
Delft University of Technology October 15, 2017

Contents

1 Introduction 1

2 Conventions 2

2.1 Include files . 2

2.2 ANSI-C source code conventions . 2

3 Initialisation 4

3.1 Introduction . 4

3.2 Clean up . 4

4 Error handling 5

4.1 Writing a DIPlib function . 6

4.2 Error macros . 7

5 Resource management 9

5.1 The scheme . 9

5.2 Cleanup operations . 11

5.3 Tracking your own resources . 11

6 Memory allocation 13

7 Arrays, structure hiding and pointers 15

7.1 Arrays . 15

7.2 Structure hiding and pointers . 16

8 Data types 19

8.1 Introduction . 19

8.1.1 The complex data types . 19

8.1.2 The binary data types . 19

8.2 Dynamic versus static data types . 20

8.2.1 Data type information from dip DataType . 20

8.2.2 Overloading . 21

Overloading scheme #1 . 21

Overloading scheme #2 . 22

8.2.3 Type iterators . 23

9 Image infrastructure 26

9.1 The dip Image structure . 26

9.2 Allocating and de-allocating images . 27

9.3 Writing image processing operations . 28

9.3.1 The general structure . 28

9.3.2 Checking the input . 28

9.3.3 Dealing with in-place operations . 29

III

IV Contents

9.3.4 Preparing the output images . 29
9.3.5 Accessing pixel data . 31

9.4 Convenience functions . 31

10 Boundary conditions 32

11 Frameworks 34
11.1 Introduction . 34
11.2 The separable filter framework . 34

11.2.1 Introduction . 34
11.2.2 Usage . 35

11.3 The monadic and single output frameworks . 35
11.4 The scan framework . 36
11.5 The pixel table framework . 36
11.6 Framework convenience functions . 36

Chapter 1

Introduction

DIPlib is a scientific image processing library written in C. It consists of a large number of functions for
processing and analysing multi-dimensional image data. The library provides functions for performing
transforms, filter operations, object generation, local structure analysis, object measurements and
statistical analysis of images.

The current release contains over five hundred (500) documented functions, and more than three
hundred (300) of these functions provide image processing functionality. The remaining functions
provide access to DIPlib’s data structures and other support functionality.

In the current release, only scalar images of standard C data types, binary data types and complex
(floating point only) data types are supported. The data type is a property of an image. Our
philosophy is that an image processing algorithm should not be tied too closely to the data type or
dimensionality. In practice this means that a single function accepts images of various data types and
dimensionality. We have attempted to deal sensibly with this. Two examples: the Gaussian filter
accepts both integer and floating point images, but always returns a floating point image. A grey
value dilation does not introduce new grey-values. The dilation function also accepts both integer
and floating point images, but the output data type is the same as the input data type in this case.
Both filter functions accept input images of arbitrary dimensionality. Some functions are tied to a
particular dimensionality, for instance most skeletonisation algorithms, and these only operate on an
image with the correct dimensionality.

The library does not contain any I/O or display functionality. A separate library, dipIO, is available
for I/O functionality, with support for ICS, TIFF, JPEG, GIF and a variety of other file types.

We use MATLAB as our image processing environment and as frontend to DIPlib. The frontend,
DIPimage, is available as a MATLAB toolbox. Together MATLAB and DIPimage yield a powerful
workbench for working with scalar and vector images in any number of dimensions.

More information about DIPlib and DIPimage can be found at their web page:
http://www.diplib.org/.

1

http://www.diplib.org/

Chapter 2

Conventions

This chapter describes the file and C statements conventions used in the DIPlib and dipIO source
libraries. We will use the term public to specify that something (like a function) is documented, sup-
ported, and available on the DIPlib library level. Something is called private when it is undocumented
and unsupported.

2.1 Include files

The include file diplib.h should always be included. This include file includes some other include
files that are (almost) always necessary. The DIPlib library is internally organised as a set of smaller
libraries, each with its own include file(s). The reference guide and the examples show which include
file(s) should be used.

All DIPlib include files start with the prefix dip .

The include file dipio.h should always be included if functions from dipIO are used. Other include
files might be necessary; again, the reference guide shows which files to include.

All dipIO include files start with the prefix dipio .

2.2 ANSI-C source code conventions

In general, names of variables, functions or structures which are composed out of two or more words
are catenated by capitalising the first character of each word.

• Variables start with a lowercase character.

• Defines and macros are written capitals. Public macro’s, defines and enumeration constants
start with DIP , and private ones with DIP . Names composed out of two or more words, are
catenated with an underscore.

• Public function and structure names start with the prefix dip , followed by a function name
starting with a capital. There is one exception to this rule. DIPlib’s simple numeric data types
are entirely written in lower caps.

• Private function names start with the prefix dip .

• Conditional statements are surrounded by braces, even single line ones.

• Functions which can only handle a specific data type have the suffix of this data type appended to
the function name. For example, if the function dip MyOwnFunction can only handle dip uint8,
its name will be dip MyOwnFunction u8.

Example:

2

DIPlib Programmers Guide 3

#include "diplib.h"

/* dip_error.h is included through diplib.h */

dip_Error dip_MyFunction

(

dip_Image in

)

{

DIP_FN_DECLARE("dip_MyFunction");

dip_int ii;

DIPTS((param < DIP_MINIMUM_PARAMETER),

dip_errorParameterOutOfRange);

for(ii = 0; ii < param; ii++)

{

DIPXJ(dip__MyLowLevelFunction_sfl(in, ii));

}

dip_error:

DIP_FN_EXIT;

}

Chapter 3

Initialisation

DIPlib and dipIO have to be initialised before use and also require some clean up operations after use.

3.1 Introduction

Before DIPlib functions can be used, the library needs to be initialised. This is achieved by calling
the following function:

dip_Initialise();

It is safe to call dip Initialise more than one time, only the first call will be effective.

The equivalent function for dipIO is:

dipio_Initialise();

3.2 Clean up

Before exiting a program linked with DIPlib, the following function should be called, allowing some
clean up operations to be performed (preventing memory leaks):

dip_Exit();

The equivalent function for dipIO is:

dipio_Exit();

4

Chapter 4

Error handling

In order to use or write DIPlib functions it is necessary to know how errors are dealt with. DIPlib’s
error mechanism has the following features:

• consistent error handling

• errors are handled using functions’ return values

• a function call tree is maintained by the error functions and macros to facilitate the debugging
of DIPlib code.

• each function in the call tree can have an arbitrary message associated with it.

Consider the following schematic piece of code:

main()

{

DoSomethingClever();

DoSomethingDumb();

}

DoSomethingClever()

{

DoSomethingStupid();

}

Both DoSomethingDumb() and DoSomethingStupid() are rigged to always return an error. If main()
is executed, a call tree as shown in figure 4.1 will be returned by main().

Main

DoSomethingClever

DoSomethingStupid Did something stupid

DoSomethingDumb Did something dumb

Figure 4.1: A DIPlib call tree. Each entry shows the function name and (optionally) a message.

5

6 Chapter 4. Error handling

In order to use the error mechanism it is necessary that a function is written using the proper initiali-
sation and exit macros. These are described in section 4.1. Furthermore, functions that return DIPlib
errors should not be called directly, but only through the macros described in section 4.2.

4.1 Writing a DIPlib function

Our error scheme requires that some local variables are defined and initialised. Therefore a DIPlib
function should start with the DIP FN DECLARE macro. This macro takes the function name as an
argument (this is needed for constructing a call tree). The function should be exited only through
using the DIP FN EXIT macro. Both macros should be followed by a semicolon.

A line containing the label dip error should precede the DIP FN EXIT macro. This label is used by
the error macros to jump to the end of the function if an error condition occurs. Only if your routine
does not use one of these macros, can this label be omitted. Any cleanup operations, such as freeing
memory, should be done after this label, but before the DIP FN EXIT macro.

The return type of the function should be dip Error, which is a typedef for a pointer to the actual
error structure dip Error. If a function executes without generating an error, the zero pointer is
returned (use the supplied macros to deal with errors, rather than manipulating the error structure
yourself).

There is also a set of macros starting with DIP FNR, which are similar to the DIP FN macros. The
introduction of these is deferred to chapter 5.

Summarising, a DIPlib function should:

• have a return type of dip Error

• precede its declarations with the macro DIP FN DECLARE

• end with the label dip error, followed by cleanup actions, and finally the DIP FN EXIT macro.

The template for a DIPlib function is as follows:

DIPlib Programmers Guide 7

dip_Error

dip_MyFunction

(

/* Your arguments */

)

{

DIP_FN_DECLARE("dip_MyFunction");

/* Your declarations here */

/* Your code here */

/*

* Example of how to generate an error condition and set the

* error message.

*/

DIPSJ("Your error message");

dip_error:

/* Your clean up code */

DIP_FN_EXIT;

}

4.2 Error macros

In this section we describe the various macros for dealing with DIPlib’s error mechanism. The first
and most common error related action is calling a function, checking if it returned an error and if so
propagate the error to the caller of the current function. This task is performed by the DIPXJ macro.
It has one argument: the function to be called. If this function returns an error, the macro jumps to
the dip error label. DIP FN EXIT takes care of adding the current function’s name to the call tree
and return the extended call tree to the caller. All macros that take care of error handling consist of
the three letters DIP followed by two indicating their function. In this case ”XJ”, which is short for
”eXecute and Jump”. Note that if only DIPXJ is used, the call tree will be reduced to a simple linked
list.

Sometimes however, you do not wish to immediately terminate the current function, but do some
further processing despite the fact that the function that was just called returned an error. This is
possible using the DIPXC macro, which is short for ”eXecute and Continue”. Using this macro may
results in a true call tree with several branches. This macro should also be used when calling DIPlib
functions after the dip error label, otherwise we may get stuck in an infinite loop.

The macro DIPSJ, short for ”Set and Jump”, takes a string (char ∗) as an argument. The macro
jumps to the end of the current function and passes the string to the DIP FN EXIT macro, which in
turn adds the current function to the call tree and sets the message belonging to the current function
to the string passed by DIPSJ. The message is copied, so the string does not need to remain valid after
DIP FN EXIT is through with it. There are a number of predefined static error messages, which you
can use. A complete list is given in the reference manual.

It is also possible to pass dynamically allocated (using dip MemoryNew) strings to DIP FN EXIT. These
need to be explicitly freed by dip MemoryFree after DIP FN EXIT has finished its job. To achieve this
the string should be passed by the DIPJF macro, short for ”set, Jump and Free”. DIP FN EXIT will

8 Chapter 4. Error handling

now take care of freeing the string.

DIPTS, short for ”Test, Set and jump”, takes two arguments. The first is a test, the second the error
message that should be passed to DIP FN EXIT if the test result is true. It is in fact just short hand
for:

DIPTS(test, message) is equivalent to

if (test)

{

DIPSJ(message);

}

Table 4.1 gives an overview of all the macros described in this chapter. It includes the DIP FNR macros,
which are discussed in chapter 5.

DIP FN DECLARE(functionName) Declare local error variables

DIP FN EXIT
Take care of call tree and exit (return from) the
current function

DIP FNR DECLARE(functionName)
Same as DIP FN DECLARE but also declares a
dip Resources structure named rg

DIP FNR INITIALISE Initialise the resources structure

DIP FNR EXIT
Free resources, take care of call tree and exit
(return from) the current function

DIPXJ(function)
Execute function and if an error occurs pass it
to DIP FN(R) EXIT

DIPXC(function)

Execute function and if an error occurs add it
to the call tree. Does not jump to the end of the
routine

DIPSJ(message) Pass error message to DIP FN(R) EXIT

DIPJF(message)
Pass error message to DIP FN(R) EXIT and free
the message using dip MemoryFree

DIPTS(test, message)
Perform the test, and if the result is true pass
the error message to DIP FN(R) EXIT

Table 4.1: DIPlib error macros.

Chapter 5

Resource management

5.1 The scheme

One of the most error-prone tasks while writing a program is keeping track of the allocations that
are done. All this bookkeeping also has consequences for the readability of the program. In DIPlib
all allocation routines support a scheme that registers each allocation. Because all allocations are
registered, they may be freed using a single call. This registration scheme will be referred to as
resource management.

Resource management is very easy to use. First a dip Resources structure is allocated using the
dip ResourcesNew function. Other allocation functions, such as dip ImageNew (see chapter 9) accept
a dip Resources structure as a parameter. The dip ResourcesFree function can be used to free a
dip Resources structure and all resources that were registered in it. A simple example:

dip_Resources resources;

dip_Image image, anotherImage;

dip_int *iptr;

void *vptr;

dip_ResourcesNew(&resources, 0);

dip_ImageNew(&image, resources);

dip_ImageNew(&anotherImage, resources);

dip_MemoryNew(&vptr, 5000 * sizeof(dip_int), resources);

iptr = vptr;

/* more code here */

/* Frees the dip_Resources structure, the images and the memory

pointed to by iptr */

dip_ResourcesFree(&resources, 0);

The code above is equivalent to:

9

10 Chapter 5. Resource management

dip_Image image, anotherImage;

dip_int *iptr;

void *vptr;

image = 0;

anotherImage = 0;

iptr = 0;

dip_ImageNew(&image, 0);

dip_ImageNew(&anotherImage, 0);

dip_MemoryNew(&vptr, 5000 * sizeof(dip_int), 0);

iptr = vptr;

/* more code here */

/* Frees the dip_Resources structure, the images and the memory

pointed to by iptr */

dip_ImageFree(&image);

dip_ImageFree(&anotherImage);

dip_MemoryFree(iptr);

The order in which resources are freed using dip ResourcesFree is unspecified. The order may even
change between different releases of DIPlib.

The majority of the DIPlib functions starts by allocating a resources structure at the start and freeing
it at the end of the routine. We have therefore made variants of the DIP FN error macros that automate
this process. DIP FNR DECLARE is identical to DIP FN DECLARE, but also declares a resources structure.
The name of the resources structure is ”rg”. It should be followed by your own declarations. The
resources structure is initialised by invoking the DIP FNR INITIALISE macro at the start of your code.
Finally, the routine should exit using the DIP FNR EXIT macro. This macro first frees the resources
associated with ”rg”, and subsequently performs the same tasks as DIP FN EXIT. The layout of a
typical DIPlib routine using the resource management scheme is given below:

DIPlib Programmers Guide 11

dip_Error

dip_MyFunction(void)

{

DIP_FNR_DECLARE("dip_MyFunction");

dip_Image image;

DIP_FNR_INITIALISE;

/* Allocate image and register it on "rg" */

DIPXJ(dip_ImageNew(&image, rg));

dip_error:

/* Frees the dip_Resources structure and the image */

DIP_FNR_EXIT;

}

5.2 Cleanup operations

The resource management scheme is not only used to keep track of allocations. As of version 2.0.0
of DIPlib it has also become the standard scheme used to invoke cleanup operations. Consider for
example the dip ImagesSeparate (see chapter 9) function that takes care of situations where an image
is used as both input and output. dip ImagesSeparate sets up things in such a way that consequent
code can act as if the input and output images are distinct images. After the algorithm is finished,
dip ImagesSeparate needs to perform some cleanup operations. Before version 2.0.0 this would be
done by calling a function dip CleanupImagesSeparate. In newer versions dip ImagesSeparate takes
an dip Resources parameter. It registers itself in the resources structure, causing its corresponding
cleanup function to be called as soon as dip ResourcesFree is used on the resources structure. The
following is a schematic example of the scheme:

dip_ImagesSeparate(..., resources);

/* Other code */

/* Clean up code for dip_ImagesSeparate is invoked through

dip_ResourcesFree */

dip_ResourcesFree(&resources, 0);

5.3 Tracking your own resources

It is possible to use the resource management scheme to keep track of your own resources. This is
achieved through the dip ResourceSubscribe function. With this function you can register two things
in a dip Resources structure: a void pointer and a handler that will be called by dip ResourcesFree

when your resource is to be freed. dip ResourceUnsubscribe can be used to stop tracking a particular
resource. The resource itself will not be freed by dip ResourceUnsubscribe. It should only be used on
resources that have been registered directly by dip ResourceSubscribe, not on indirectly registered

12 Chapter 5. Resource management

dip_AllocateMyThing

(

myThing *thing,

dip_Resources resources

)

{

DIP_FNR_DECLARE("dip_AllocateMyThing");

DIP_FNR_INITIALISE;

/*

* Allocate your stuff and register it in "rg", the local

* resources structure allocated and initialised by

* the DIP_FNR macros.

*/

/*

* If none of the allocations failed, the following will merge

* the local resources into the resources. It will then free the

* local resources structure (not the resources it was tracking).

*/

DIPXJ(dip_ResourcesMerge(resources, &rg));

/* Now rg == 0 again */

dip_error:

/*

* If anything went wrong before the call to dip_ResourcesMerge,

* DIP_FNR_EXIT will free all resources allocated by our

* function.

*/

DIP_FNR_EXIT;

}

Figure 5.1: Using dip ResourcesMerge.

resources such as images allocated by dip ImageNew.

When writing a function that allocates a structure that requires the allocation of many substructures,
dip ResourcesMerge may come in handy. It is best demonstrated by the example given in figure 5.1:

Chapter 6

Memory allocation

The DIPlib library offers its own memory allocation functions. Use them instead of the standard malloc
functions to allocate memory. In the future, the use of DIPlib’s own memory allocation functions could
improve memory use and could simplify the portability of the library. Most importantly, the DIPlib
allocation routines support the DIPlib error mechanism and resource management.

Memory can be allocated using the dip MemoryNew function. It takes a pointer to a void pointer as
its first argument. If the allocation is succesful the void pointer will point to the allocated memory.
The second argument is the amount of bytes to allocate. The memory can be registered in a resources
structure by passing it as the third parameter.

Memory can be freed using the dip MemoryFree function. It takes a pointer to the memory to be
freed. Usually memory is tracked using the resource management scheme, so dip MemoryFree is not
often used explicitly. It is allowed to pass a zero pointer to dip MemoryFree, in which case it does
nothing.

Finally, memory chunks can be resized using dip MemoryReallocate. The arguments are the same as
those for dip MemoryNew, except that the pointer to a void pointer must be a valid address previously
returned by dip MemoryNew. If the reallocation fails, the pointer will not be overwritten.

If the developent environment provides its own memory management functions,
dip MemoryFunctionsSet can be used to tell DIPlib to use those functions instead of the de-
fault malloc, realloc, and free.

The following example shows how to allocate ten integers, please read the comment in the code
carefully:

13

14 Chapter 6. Memory allocation

dip_int *mypointer;

void *voidpointer;

/* Allocate some memory */

DIPXJ(dip_MemoryNew(&voidpointer, 10 * sizeof(dip_int), 0));

mypointer = voidpointer;

/*

* One might be tempted to write:

* dip_MemoryNew(&mypointer, 10 * sizeof(dip_int), 0));

* but "C" does not guarantee that different pointers have the

* same representation. A void pointer can represent any other

* pointer though, although a conversion may be required. In the

* code above this conversion is done by the assignment of the

* void pointer to the integer pointer (implicit cast).

*/

/* Free the memory */

DIPXJ(dip_MemoryFree(mypointer));

Chapter 7

Arrays, structure hiding and pointers

7.1 Arrays

In many places an array is required to store some data. For example, the Gaussian filter in DIPlib
may have a different sigma in every dimension. To pass these sigma values to the Gaussian filter an
array is employed. Array’s in C do not have an explicit size field. For example, it cannot be verified
that the number of elements and the dimensionality of the image that is to be filtered match. In many
other places it would be useful to know the size of the array as well.

To solve these problems, DIPlib defines a set of array types. One of these is the dip IntegerArray

type. It is defined as follows:

typedef struct

{

dip_int size;

dip_int *array;

} dip__IntegerArray, *dip_IntegerArray;

The basic set of these array types consists of: dip IntegerArray, dip FloatArray,
dip ComplexArray, dip BooleanArray and dip VoidPointerArray. We’ll refer to these kind of array
types as Arrays as opposed to normal arrays.

A dip IntegerArray can be allocated using dip NewIntegerArray. There are corresponding alloca-
tion routines for the other Arrays as well.

There are two typedefs pertaining to each Array. One for the actual structure itself and one for a
pointer to the structure. The reason for this is explained in section 7.2. Usually Arrays are handles
through the pointer types, such as dip IntegerArray.

The Array type definitions are public. This means that their definition is fixed. Although using
dip ResourcesFree is usually much more convenient, it is also ”legal” to free an Array by hand as
follows:

dip_IntegerArray myArray;

/* Allocate an integer array with two elements initialised to 0 */

dip_IntegerArrayNew(&myArray, 2, 0, 0);

/* NOT RECOMMENDED - NOT RECOMMENDED - NOT RECOMMMENDED */

dip_MemoryFree(myArray->array);

dip_MemoryFree(myArray);

15

16 Chapter 7. Arrays, structure hiding and pointers

The preferred way is of course:

dip_Resources resources;

dip_IntegerArray myArray;

dip_IntegerArrayNew(&myArray, 2, 0, resources));

/* Do it this way, please? pretty please? */

dip_ResourcesFree(&resources, 0);

An Array may have size zero. It is also allowed to set the size field to a smaller value without
reallocating the array pointed to by the array element.

Using an Array is almost as simple as using a normal C array. The following code shows the content
of an Array:

dip_IntegerArray myArray;

dip_int ii;

for (ii = 0; ii < myArray->size; ii++)

{

printf("myArray[%d] = %d\n", ii, myArray->array[ii]);

}

7.2 Structure hiding and pointers

In this section we discuss some design principles that we have used in DIPlib. The first is that the
actual definition of a complex structure, such as an image, should be hidden to the user. This allows
us to do two things; first we are able to check every action that a user performs on the structure,
because all access must be through access functions. Secondly it allows us to redesign the structure
while its interface remains the same.

We will explain this with a simple example. We will start out with a simple structure to represent an
image:

typedef struct

{

dip_DataType dataType;

dip_IntegerArray dimensions;

void *data;

} dip__TheImage;

The dip DataType type is explained in chapter 8. It simply states whether the pixels are represented
by integers, floating point numbers etc. The dimensions Array contains the dimensionality and the
size of each dimension. The prototype for a copy function looks like this:

dip_Error dip_Copy(dip__TheImage *, dip__TheImage *);

DIPlib Programmers Guide 17

Our first step is to change the typedef to:

typedef struct

{

dip_DataType dataType;

dip_IntegerArray dimensions;

void *data;

} dip__TheImage, *dip_TheImage;

And the prototype becomes:

dip_Error dip_Copy(dip_TheImage, dip_TheImage);

Here we have employed a design policy to hide pointer definitions in a typedef. Source code becomes
a little more pleasant to read, although the programmer must remain aware of the pointer nature of
these types.

Now our second objective of hiding the definition is achieved by putting the definition of dip TheImage

in a private include file, that is not included in the distribution and defining dip TheImage as a void
pointer. The result looks like this:

/* In a private include file */

typedef struct

{

dip_DataType dataType;

dip_IntegerArray dimensions;

void *data;

} dip__TheImageInternal;

/* In the public include file */

typedef void *dip_TheImage;

dip_Error dip_Copy(dip_TheImage, dip_TheImage);

The definition of dip TheImage as a void pointer has some undesirable consequences. When a pointer
of the wrong type is passed to a function expecting a dip TheImage, it will be silently converted to
a void pointer by the compiler. To make sure that the compiler can check dip TheImage parameters,
we have to add an extra indirection to our definition:

18 Chapter 7. Arrays, structure hiding and pointers

/* In a private include file */

typedef struct

{

dip_DataType dataType;

dip_IntegerArray dimensions;

void *data;

} dip__TheImageInternal;

/* In the public include file */

typedef struct

{

void *internalImage;

} dip__TheImage, *dip_TheImage;

dip_Error dip_Copy(dip_TheImage, dip_TheImage);

This is the approach we have used with both the dip Resources and dip Image structure. The latter
is introduced in chapter 9.

Because dip IntegerArray, dip Resources and dip Image are in fact pointers, we can assign zero
to a variable of one of these types. It is also possible to pass zero to a routine expecting a variable
of one of these types. Many routines do accept zero as a valid argument, usually meaning that this
argument must be ignored by the routine.

Chapter 8

Data types

8.1 Introduction

Pixel values can be represented by different types. Such types will be referred to as data types.
DIPlib uses five sets of data types: unsigned integers, signed integers, floating point numbers, complex
numbers and binary numbers. All of these come in different sizes, each able to represent a different
range of values. The complete set of data types is given in table 8.1.

There are also generic data types: dip binary, dip int, dip float and dip complex. These can be
used when the exact range doesn’t matter (non pixel data).

The complex and binary data types are discussed in the following two sections.

8.1.1 The complex data types

The complex data types are defined by the following two structures:

typedef struct typedef

{ {

dip_sfloat re; dip_dfloat re;

dip_sfloat im; dip_dfloat im;

} dip_scomplex; } dip_dcomplex;

There are no integer based complex data types.

8.1.2 The binary data types

Binary data is represented by a single bit in one of the unsigned integer data types. One such integer
may be used to store multiple binary values. The data types dip bin8, dip bin16 and dip bin32 are
equivalent to dip uint8, dip uint16 and dip uint32. Using explicit typedef’s for the binary data
types has the advantage that it is immediately clear in which fashion an integer is used: as a container
for binary values or simply as an integer. Because multiple binary values may be stored in a single
integer, care must be taken not to change any of the other bits. The following example shows how to
clear and set bit 2 in an integer (the rightmost bit is bit 0) as well as how to read it:

19

20 Chapter 8. Data types

integer float complex
binary unsigned signed

dip bin8 dip uint8 dip sint8 dip sfloat dip scomplex

dip bin16 dip uint16 dip sint16 dip dfloat dip dcomplex

dip bin32 dip uint32 dip sint32

Figure 8.1: DIPlib data types.

/*

* dip_bin8 is identical to dip_uint8, but shows our intent to use it

* as a container for binary values.

*/

dip_bin8 binaryData;

dip_int bit2;

/* Set bit 2, leaving the others as they are */

binaryData |= 1 << 2;

/* Clear bit 2, leaving the others as they are */

binaryData &= ~(1 << 2);

/*

* read bit 2 from binaryData and set the variable bit2 accordingly

*/

bit2 = (binaryData & (1 << 2)) >> 2;

8.2 Dynamic versus static data types

Images, as discussed in chapter 9, store image data in the data type indicated by a field in the image
structure. The data type is not fixed and can be changed by applying various operations to the image.
This dynamic use of types is alien to the C language, and must therefore be simulated. To the user
an image seems an entity with a dynamic type, while in reality each image processing routine will call
a different low-level function for each specific data type it supports. Data types used in a dynamic
fashion are represented by a dip DataType flag. Table 8.2 lists all data type flags, as well as the
corresponding data types.

The remaining sections of this chapter will deal with the following three topics:

• Getting information about a data type from a dip DataType flag.

• Calling different low-level type specific routines based on a dip DataType flag.

• Compiling code for several data types.

8.2.1 Data type information from dip DataType

The dip DataTypeGetInfo can be used to obtain information about a data type from a dip DataType

flag. Some examples of the functionality provided by this function are: sizeof(dip DataType),
finding the floating point type corresponding to a complex type (i.e. dip sfloat corresponds to

DIPlib Programmers Guide 21

data type dip DataType bitwise flag suffix

dip bin8 DIP DT BIN8 DIP DTID BIN8 b8

dip bin16 DIP DT BIN16 DIP DTID BIN16 b16

dip bin32 DIP DT BIN32 DIP DTID BIN32 b32

dip uint8 DIP DT UINT8 DIP DTID UINT8 u8

dip uint16 DIP DT UINT16 DIP DTID UINT16 u16

dip uint32 DIP DT UINT32 DIP DTID UINT32 u32

dip sint8 DIP DT SINT8 DIP DTID SINT8 s8

dip sint16 DIP DT SINT16 DIP DTID SINT16 s16

dip sint32 DIP DT SINT32 DIP DTID SINT32 s32

dip sfloat DIP DT SFLOAT DIP DTID SFLOAT sfl

dip dfloat DIP DT DFLOAT DIP DTID DFLOAT dfl

dip scomplex DIP DT SCOMPLEX DIP DTID SCOMPLEX scx

dip dcomplex DIP DT DCOMPLEX DIP DTID DCOMPLEX dcx

Figure 8.2: Data types, their corresponding dip DataType flags, bitwise flags, and suffixes.

dip scomplex) and determining whether the data type is an unsigned integer.

8.2.2 Overloading

The term overloading is used to describe the scheme that is used by DIPlib to call type specific routines
from a type independent routine. Which routine is called is determined by a dip DataType. There
are actually two overloading schemes. One more closely resembles a function call, while the other is
more flexible. For both schemes the user has to provide a base name for the function to be called.
The overload scheme attaches a type dependent suffix to this base name, as given by table 8.2, and
calls the corresponding function.

Overloading scheme #1

The first scheme defines a macro called DIP OVERLOAD FUNC which allows you to invoke a type-
dependent function almost like an ordinary function. The following steps must be undertaken to
use the macro:

• At the top of your code, do the following:
#define DIP OVL ALLOW <list of allowed data types>
#include "dip overload.h"

• At the spot where the type specific code should be called:
DIP OVERLOAD FUNC(<base name of the function> (<argument list>),

<data type>)

The data types for which a function is available are specified by defining DIP OVL ALLOW. This define
must be followed by a bitwise OR of the flags specified in table 8.2. Besides these flags, which each
specify a single data type, there is also a set of flags that specify entire groups of data types. These
flags are given in table 8.3. If DIP OVL ALLOW is not defined, all data types will be overloaded.

Since DIP OVL ALLOW is defined at the start of the source file, DIP OVERLOAD FUNC can not be used for
calling type specific functions that are available for different sets of data types. This is possible with
the second scheme though.

22 Chapter 8. Data types

flag data types

DIP DTGID UINT uint

DIP DTGID UNSIGNED uint

DIP DTGID SINT sint

DIP DTGID INT(EGER) uint, sint

DIP DTGID FLOAT float

DIP DTGID REAL uint, sint, float

DIP DTGID COMPLEX complex

DIP DTGID SIGNED sint, float, complex

DIP DTGID BINARY binary

DIP DTGID ALL all

Figure 8.3: Data type group flags.

Overloading scheme #2

The second scheme also uses the C preprocessor to do the overloading. To perform the function call
to the type specific routine, the following recipe must be inserted into the source code at the place
the function call is supposed to be executed:

• #define DIP OVL FUNC <base name of the function>

• #define DIP OVL ARGS <argument list>

• #define DIP OVL ALLOW <list of allowed data types>

• #include "dip ovl.h"

The data type is assumed to be in a variable called ovlDataType. If DIP OVL ALLOW is not defined,
all data types are overloaded. The following example shows how a function dip Filter calls the
appropriate low-level routine for the two data types it supports, DIP DT SFLOAT and DIP DT DFLOAT.

DIPlib Programmers Guide 23

dip_Filter

(

dip_Image in,

dip_Image out

)

{

dip_DataType ovlDataType;

/*

* Some code, which we assume initialises ovlDataType, as well

* as the two data pointers inData and outData.

*/

#define DIP_OVL_FUNC dip_Filter

#define DIP_OVL_ARGS (inData, outData)

#define DIP_OVL_ALLOW DIP_DTGID_FLOAT

#include "dip_ovl.h"

/*

* if ovlDataType = DIP_DT_SFLOAT the code above will execute:

* DIPXJ(dip_Filter_sfl(inData, outData));

* if ovlDataType = DIP_DT_DFLOAT the code above will execute:

* DIPXJ(dip_Filter_dfl(inData, outData));

* for all other data types :

* DIPSJ(dip_errorDataTypeNotSupported);

*/

}

In addition to DIP OVL ARGS it is also possible to set DIP OVL BINARY ARGS. If defined, it will be used
instead of DIP OVL ARGS for the binary data types. Often the parameter list for binary data types
includes extra parameters, such as plane numbers.

The default action undertaken by dip ovl.h is to call a type specific routine using DIPXJ(). Sometimes
it is necessary to set a function pointer to a type specific routine. This can be accomplished by defining
DIP OVL ASSIGN as ”<filter pointer> =”. Again the binary data types can be treated separately
using DIP OVL BINARY ASSIGN.

8.2.3 Type iterators

In the example of the previous section, two functions (dip Filter sfl and dip Filter dfl) perform
the same task, but for different data types. The code for the two functions is very likely equivalent,
except for the data type. Writing the same code for different data types is tedious and error prone.
Maintaining the code is also very difficult, because the different copies of the code have to be kept up
to date with respect to each other.

In cases such as these DIPlib uses an #include file which is used to iterate over a selected set of data
types and includes a user specified file which contains code that must be compiled for the set of data
types. The following recipe shows how to use the scheme:

• #define DIP TPI FILE <name of file containing type specific code>

24 Chapter 8. Data types

• #define DIP TPI ALLOW <list of allowed data types>

• #include "dip tpi.h"

The include file iterates over all speficied data types and during each iteration assigns the current
data type to DIP TPI. In the type specific code DIP TPI must be used to refer to the current data
type. Besides DIP TPI a number of other symbols are also defined by dip tpi.h. For example
DIP TPI DATA TYPE is the dip DataType corresponding to DIP TPI. The other symbols are explained
in the reference manual.

The most elegant way to use this scheme is by putting the type independent code and the type specific
code in one file and letting this file #include itself using dip tpi.h. This works as demonstrated by
the piece of pseudo code shown in figure 8.4.

The scheme can also be used in include files to generate prototypes for type specific functions.

filter.c:

/* When the compiler starts processing this program, DIP_TPI will be

* undefined and process the code directly following the next

* #ifndef... */

#ifndef DIP_TPI

/* Type independent code */

#include "diplib.h"

/* Start of type specific code */

#define DIP_TPI_ALLOW DIP_DTGID_FLOAT

#define DIP_TPI_FILE "filter.c"

#include "dip_tpi.h"

*/ End of type specific code */

dip_Filter (dip_Image in, dip_Image out)

{

/* Call the appropriate function dip_Filter_sfl or dip_Filter_dfl

* using one of the overload schemes. */

}

/* This is where the type specific code is stored. The compiler will

* reach this code only through including "dip_tpi.h". It will be

* included for each realization of DIP_TPI, in this case both

* dip_sfloat and dip_dfloat. */

#else

/* DIP_TPI_DEFINE attaches the proper suffix to dip_Filter depending

* on the current contents of DIP_TPI. */

DIP_TPI_DEFINE(dip_Filter) (void *inData, void *outData)

{

DIP_TPI *in, *out;

in = inData;

out = outData;

/* Execute algorithm */

}

/* End of storage place for type specific code */

#endif

Figure 8.4: Example of self including code for multiple data types.

25

26 Chapter 9. Image infrastructure

Chapter 9

Image infrastructure

9.1 The dip Image structure

The most important structure in the DIPlib library is the dip Image structure. This structure is used
to store all the necessary information to represent an image. In this chapter we describe the dip Image

structure and the functions used to manipulate it.

There are images of different types, such as scalar and color images. The kind of information that is
stored in a dip Image will vary with the image type. There are a few fields that are always present in
the dip Image structure. These fields fully describe the only currently supported image type: scalar
images. The image type is represented by a field in the dip Image structure of the dip ImageType

type. Depending on the contents of this field, the other fields in an dip Image may or may not have
a meaning. The possible dip ImageType’s are given in table 9.1.

The most important fields of a dip Image are given in table 9.2. There are more fields, but these are
either for internal use only or for very specific uses. These will be discussed on a ”need to know” basis
in the appropriate sections. dip Image fields may only be accessed using a set of access functions.

The pixel values are stored in the data type indicated by the data type field. See table 8.2 for a list
of the possible values and the corresponding types.

The dimensions of the image are stored in an Array. The dimensionality of an image is zero or higher.
Scalar images with dimensionality zero are used to represent scalar values in DIPlib.

The data field is used to store a pointer to a block of memory where the pixel data is stored. The
pointer points to the pixel at the origin of the image. The address of an arbitrary pixel in an D-
dimensional image at the coordinate specified by the array cor[] with D elements, is given by:

address = origin +

D−1∑
i=0

cor[i] ∗ stride→array[i]

Where origin is the address of the pixel at the origin of the image and stride[] is an Array stored in
the dip Image structure. For each dimension it holds the interleave between two neighbouring pixels
in memory.

For binary images the plane field holds the number of the bit in which the binary data is stored.

The data pointer, plane and stride fields are all volatile. They can be changed by most functions. It is
only safe to use the information in these fields during the time you access the pixel data of the image.
See section 9.3.5 on how to safely access the pixel data.

DIPlib Programmers Guide 27

DIP IMTP SCALAR Scalar images

Figure 9.1: The dip ImageType’s.

field type short description access function

dip ImageType The image type dip ImageGetType

dip ImageState The image state -

dip DataType Data type used to store pixel values dip ImageGetDataType

dip IntegerArray Dimensions of the image dip ImageGetDimensions

void * Pointer to the pixel data dip ImageGetData

dip int Plane number, for binary images dip ImageGetPlane

dip IntegerArray Stride array. See text dip ImageGetStride

Figure 9.2: The dip Image fields and their access functions.

9.2 Allocating and de-allocating images

A new image can be allocated using the dip ImageNew function. The fields of the newly allocated
dip Image are initialised to some default values. No image data is allocated. The fields of this
image must now be set to their desired values using the following set of functions: dip ImageSetType,
dip ImageSetDataType, and dip ImageSetDimensions. Another useful way of initialising these fields
is by using the dip ImageCopyProperties function. This function copies all the fields from an existing
image to the target image. The functions described above can then be used to override some of the
fields.

When the fields are properly initialised, a data block to store the image data may be allocated by using
the dip ImageForge function. The following piece of code shows how to allocate a two-dimensional
scalar image with dimensions (156, 111) and data type DIP DT SFLOAT:

dip_Image image;

dip_IntegerArray dimensions;

dip_IntegerArrayNew(&dimensions, 2, 0, 0);

dimensions->array[0] = 156;

dimensions->array[1] = 111;

dip_ImageNew(&image, 0);

dip_ImageSetType(image, DIP_IMTP_SCALAR);

dip_ImageSetDataType(image, DIP_DT_SFLOAT);

dip_ImageSetDimensions(image, dimensions);

dip_ImageForge(image);

An image is said to be raw before the call to dip ImageForge and forged afterwards. The
dip ImageSet functions can only be used on a raw image. While this scheme may seem complex,
it is very flexible. It will also simplify the integration of any future image types. There are also
simpler ways to allocate an image, see section 9.4.

The dip ImageStrip function deallocates the image data if present and resets all image fields to their
initial value, thus returning the image to its raw state. dip ImageFree first calls dip ImageStrip and
then frees the dip Image structure itself. It is almost never necessary to call dip ImageFree directly

28 Chapter 9. Image infrastructure

because of the resource tracking scheme.

9.3 Writing image processing operations

9.3.1 The general structure

All DIPlib image processing routines have the same general structure. If you write your own routine
using DIPlib, it will have to obey the same structure. This structure is as follows:

• Check to see if the input images have the type and size (and any other properties) that you
support. For instance, you may only support floating point scalar images. Return an error if
the input images do not have the properties you require. Raw input images make no sense, and
this should also be detected.

• Users are allowed to call your functions as if they are able to operate in-place. This means
that some of the input images may also be specified as output images. Most low-level code will
overwrite its own input in such a case, so it must be explicitly dealt with.

• The output images must be adjusted so that they will be of the proper type and size as required
by the routine. For output images raw images do make sense and should be supported.

• Get pointers to the pixel data and execute your algorithm.

• Clean up. Resource tracking (dip ResourcesFree) will probably take care of this.

Not all image processing operations will access the pixel data directly. Such functions, that merely call
existing image processing routines, can delegate much of the work described above to these existing
routines. This is often not true for the in-place problem, so make sure that you explicitly deal with
this.

The following sections will deal with each of the items on the list above in some more detail.

9.3.2 Checking the input

This is an easy task, although it can be tedious. There are a number of functions that simplify this
task however:

dip_ImagesCompare(), dip_ImagesCompareTwo(),

dip_ImageCheck(),

dip_ImagesCheck(), dip_ImagesCheckTwo(),

dip_IsScalar(),

dip_DataTypeAllowed(),

As an example we show how to check whether two images have the same size (dimensionality and
individual dimensions):

/*

* The last parameter is 0. This will cause dip_ImagesCompareTwo

* to return an error when the images do not have the same size.

*/

dip_ImagesCompareTwo(image1, image2, DIP_CPIM_SIZE_MATCH, 0);

We refer to the reference manual for the description of these functions.

DIPlib Programmers Guide 29

Operation step 1 step 2 step 3

Gauss(A → A) New(TMP) Gauss(A → TMP) Replace(TMP → A)

Figure 9.3: The operations performed by dip ImagesSeparate.

9.3.3 Dealing with in-place operations

The scheme that deals with in-place operations is quite simple and elegant. The function
dip ImagesSeparate accepts an array of input images and another one of output images. It re-
turns an array with output images that you should use instead of the original output images.
dip ImagesSeparate operates in four steps:

• First it examines the arrays of input and output images to see if any of the input images are also
used as output images. Any output image that is also an input image is marked. If an image is
specified as an output more than once, an error is returned.

• Now it returns the array containing the output images that the user must use from now on.
For unmarked output images dip ImagesSeparate simply returns the existing output image.
In the case of a marked output image a new raw image is created with dip ImageNew followed
by a dip ImageCopyProperties from the old to the newly allocated output image. An entry
is inserted into the resource tracking structure that indicates that the output image has been
replaced by a new one. The new (raw) image is returned to the user. When this step is finished,
dip ImagesSeparate returns.

• This step is not performed by dip ImagesSeparate, but by the user. At this point you perform
the adjustment of the output images and execute your algorithm. See sections 9.3.4 and 9.3.5.

• This step is invoked by dip ResourcesFree. The output images that were allocated in step 2
now replace the original output images.

Figure 9.3 shows the data flow for a simple one input one output operation.

Some functions convert their input image to a temporary image, to support image types that are not
directly supported. Consider a Gaussian filter that operates only on floating point images. It is very
annoying that this filter does not accept an integer image for its input. The solution is to convert the
input image to a temporary floating point image. If the input image has been copied to a temporary
image, it is no longer necessary to create a temporary output image, since the input data has already
been safely stored. Therefore dip ImagesSeparate accepts an array of flags (one for each input image)
with which you can indicate that the input data was copied to a safe place. This prevents unnecessary
allocation of temporary output images.

9.3.4 Preparing the output images

Usually an image processing operation will return some results in an output image. The output image
often must be of some predescribed type and size, which may depend on other factors. Functions should
accept both raw and forged output images. The basic sequence of steps that should be undertaken is
as follows:

30 Chapter 9. Image infrastructure

if "out is forged"

{

dip_ImageStrip(out);

}

Set properties of out to what they are supposed to be;

dip_ImageForge(out);

}

This sequence is often performed by the dip ImageAssimilate function. It performs the sequence
described above, and sets the properties of the output image by using dip ImageCopyProperties and
a second image used as an example. The way to use dip ImageAssimilate is thus: set up a dummy
image with the desired properties; call dip ImageAssimilate with the dummy image as the example
and the output image as its output.

Consider an image processing operation that requires its output to be of the same type and size as its
input image. The following code shows how to achieve this:

dip_MyFunction(in, out)

{

dip_ImageAssimilate(in, out); /* Now out has inherited all

properties from in... */

/* the rest of your code */

}

If the output should have the same size as the input and should always have data type DIP DT SFLOAT,
this can be achieved by the following code:

dip_MyFunction(in, out)

{

dip_Image dummy;

dip_ImageNew(&dummy, 0);

dip_ImageCopyProperties(in, dummy);

dip_ImageSetDataType(dummy, DIP_DT_SFLOAT);

dip_ImageAssimilate(dummy, out);

/* the rest of your code */

}

It is also possible to use dip ImageAssimilate to allocate a temporary image that has the same
properties as some existing image:

/* image is an existing image... */

dip_Image tmpImage;

dip_ImageNew(&tmpImage, 0);

dip_ImageAssimilate(image, tmpImage);

DIPlib Programmers Guide 31

The function dip ImageClone is merely short hand for these two calls. Note that the image data
is not copied. If this is desired, substitute dip Copy for dip ImageAssimilate (dip Copy will call
dip ImageAssimilate and then copy the data).

9.3.5 Accessing pixel data

When all preparations for your algorithm have been completed, the function dip ImageGetData can
be used to obtain pointers to the pixel data of each image. No other image processing functions should
be called after the pointers have been obtained, because these can possibly alter the pointers. Only
after you have finished using the pointers, it is safe to use other operations again. The plane and
stride fields of an image should be requested after the call to dip ImageGetData to ensure that they
are up to date when the pixel data is accessed.

dip ImageGetData has a number of parameters that are currently not used, but that are reserved for
future extension. It makes a distinction between input and output images for the same reason. For
both types of images (the pointers obtained from input images may only be used for reading data)
an array of images is given as input, and an Array of data pointers is returned. Associated with each
array of images is an array of flags that is currently not used. There is also a global flag parameter
that is also unused. Finally there is a resource tracking parameter that can be used for any clean up
operations that a future extension may require. The dip ResourcesFree call associated with these
resources should come right after you have finished using the data pointers.

9.4 Convenience functions

The previous sections described the basic tools necessary to build an image processing routine using
the DIPlib library. Certain sequences of function calls will occur frequently and it is useful to have a
set of convenience functions that take care of these recurring tasks.

The first of these is dip ScalarImageNew which allocates a DIP IMTP SCALAR image and accepts data
type and dimensions parameters.

Another common operation is that of changing the data type of an image. We have already shown
how this can be achieved using dip ImageAssimilate, but it is easier to use dip ChangeDataType

instead. The output inherits all properties from the input images, except the data type, which is
explicitly specified using a parameter. dip ChangeTo0d is a variant of dip ChangeDataType, which
performs the same tasks and sets the dimensionality of the output image to zero.

Chapter 10

Boundary conditions

One of the design features of the DIPlib library is to standardise the way filters deal with the borders
of an image. This is done by defining a set of boundary conditions describing how an image should
be extended beyond the borders of that image.

Most of the filters that are supplied by the DIPlib library accept an array of boundary conditions. This
array specifies what the boundary condition is for each dimension of the image that has to be filtered.
These functions also accept NULL for this parameter, causing the default boundary condition to be
used. This default is set to DIP BC SYM MIRROR by dip Initialise(), and can be changed through
dip GlobalBoundaryConditionSet(). It is possible to specify a different boundary condition for each
image dimension.

The boundary conditions supported by the DIPlib library are specified in the dip Boundary enumera-
tion type (defined in dip support.h). The current inplemetation of the library supports the boundary
conditions specified in table 10.1 (see 10.2)

Please note that using mirroring as implemented by DIPlib, the border pixels are duplicated. Thus,
if an image 123 is extended by mirroring, it will become 123321 and not 12321.

If a filter can not support a certain boundary condition, it should return the
DIP E BOUNDARY CONDITION NOT SUPPORTED error code.

The DIPlib library supplies two functions to facilitate the processing of the boundary conditions:
The function dip FillBoundary() extends a dip Image according to the boundary condition. The
function dip FillBoundaryArray() extends a one dimensional array.

The FrameWork functions (see chapter 11) process the boundary conditions for the filters that use one
of these FrameWork functions. Therefore these filters do not have to handle the boundary conditions
themselves, but only have to pass on the boundary conditions to one of the frameworks.

32

Name Description

DIP BC SYM MIRROR Symmetric mirroring

DIP BC ASYM MIRROR Asymmetric mirroring

DIP BC PERIODIC Periodic copying

DIP BC ASYM PERIODIC Asymmetric periodic copying

DIP BC ADD ZEROS Extending the image with zeros

DIP BC ADD MAX VALUE Extending the image with + infinity

DIP BC ADD MIN VALUE Extending the image with − infinity

Figure 10.1: Supported boundary conditions.

d

...
...

d b
q p

......

...
...

d
pq
b

...
...

d
d d

d

...
...

d
d

d
d

Figure 10.2: Illustration of the main boundary extensions. From left to right: the original image,
symmetric mirror, asymmetric mirror, periodic, and asymmetric periodic. The images with a black
background represent an image multiplied by -1.

33

34 Chapter 11. Frameworks

Chapter 11

Frameworks

11.1 Introduction

To quicken the development and the execution speed of image processing filters, the DIPlib library
supplies several framework functions. The following frameworks are available in the current release,

• dip SeparableFrameWork

• dip MonadicFrameWork

• dip SingleOutputFrameWork

• dip PixelTableFrameWork

• dip ScanFrameWork

The following sections describe the funtionality and use of each of these frameworks. For a complete
explaination of their function arguments and behaviour, we refer to the reference manual.

11.2 The separable filter framework

11.2.1 Introduction

The dip SeparableFrameWork function provides a framework for separable filters. Separable filters are
filters whose n-D filter operation can be separated in n consecutive one dimensional filter operations.
This results in a considerable speed up.

Normally one has to write, besides the actual one filter operation, also code for processing the
image in all its dimensions and for handling the boundary condition of each dimension. The
dip SeparableFrameWork framework takes care of these last two things leaving the user with the
responsability to provide the one dimensional filter function only. This easens the creation of such a
filter dramatically. Furthermore, the dip SeparableFrameWork will process the image in a way that
is optimized for cache performance, speeding up the processing time considerably.

As mentioned above, the dip SeparableFrameWork takes care of a lot of ”householding”, i.e. it checks
the validity of the input image and adjusts the size, dimensionality or datatype of the output image
to the desired type. After this initialisation, it starts filtering the input. This done by copying, in
a sequential order, all corresponding lines from the input and output images to 1-D arrays. Then it
calls a user-supplied function that filters the input array to the output array such that the desired 1-D
filter operation of the n-D separable filter is performed. After processing all lines in one dimensions,
dip SeparableFrameWork will repeat this for all the dimensions in the image.

Besides copying the images lines to 1-D arrays, the dip SeparableFrameWork also extends the arrays
by adding extra pixels to both sides of the line. This done to facilitate the processing of the borders
of the image. By enlarging the arrays on both sides with an user specified number of pixels, the
user-supplied filter function can savely processing all the image line pixels without the need to worry

DIPlib Programmers Guide 35

about the edges. The values of the pixels added to the arrays is determined by a user-supplied array
of boundary conditions.

11.2.2 Usage

The definition of the dip SeparableFrameWork function is:

dip_Error dip_SeparableFrameWork (dip_Image, dip_Image,

dip_BoundaryArray, dip_IntegerArray, dip_FrameWorkProcessArray);

The first argument is the input image, the second the output image. The third argument is an ar-
ray (its size equal to dimensionality of the input image) specifying the boundary condition of the
image in each dimension. This argument can be set to zero, in which can the global default bound-
ary conditions are used. The fourth argument specifies the border extension, i.e. how many pixels
dip SeparableFrameWork should add to the input and output array. (again this array has a siz equal
to the dimensionality of the input image). If the input and output arrays do not require extension,
this argument can be set to zero. The final argument is an array of dip FrameWorkProcess structures.

The definition of the user-supplied 1-D filter function is:

dip_Error (*dip_SeparableFilter) (void *, void *, dip_int,

dip_SeparableFilterParameters);

The first two arguments are pointers to the input and output arrays. These arguments are followed by
the size (in number of pixels) of these arrays. The final argument is a structure containing additional
information about the input and output arrays. This structure will be discussed later. We name this
filter function the SeparableFilterFunction from now on.

dip SeparableFrameWork creates this array of pixels by copying it from the input image and
extendeding it with a border. The size of this border is specified by the function that calls
dip SeparableFrameWork. dip SeparableFrameWork will give the filterfunction a pointer to the
first pixel of the line of the input to be processed, allowing it to access pixels on both sides of the line.
Therefore no special border processing code needs to be written for the filterfunction, reducing coding
time and code complexity.

Having created a filterfunction, or different filterfunctions for processing some dimensions of the image
in a different manner, one needs to create an array of dip FrameWorkProcess structures. with the
number of structures determines the number of times dip SeparableFrameWork has to process the
image (this number can be less, equal or larger than the dimensionality of the image). If just one
process structure is provided and the number of structures is set to zero, that structure is used to
process all dimensions of the image.

11.3 The monadic and single output frameworks

These two frameworks are very similar to the separable framework. The monadic framework is merely
a frontend to the dip SeparableFrameWork function to provide a simplified function interface for
operations that only need to scan the image. (the dimension in which the image is scanned can be
specified or left to the dip MonadicFrameWork function). This framework is primarily intended for
creating point operations (like dip Clip). The dip SingleOutputFrameWork is very similar to the

36 Chapter 11. Frameworks

monadic framework. However, it only scans an output image. This framework is intended for functions
that create or generate images (like dip FTEllipsoid).

11.4 The scan framework

This framework is an extension of the monadic framework in the sense that it provides the possiblity
to scan (in one dimension) n input and m output images (with n and m >= 0).

11.5 The pixel table framework

This framework is intended for image processing filters that filter the image with an arbitrary filter-
shape. By the coding the shape with a pixel table (runlength encoding), this framework will provide
the filterfunction a line of pixels from the image it has to filter. The filterfunction is allowed to access
pixels within a box around each pixel. The size of this box is specified by the function that calls
the framework. The dimensionality of the box is equal to the image dimensionality. For efficiency
reasons, the framework will convert the pixel table to an array of pixel position offsets and an array
of runlength which are provided to the filterfuntion.

11.6 Framework convenience functions

Although the frameworks remove much of the burden of writing an image processing filter, some
convenience functions are provided by the DIPlib library that make this creation almost enjoyable.
The dip SeparableConvolution function provides a high level interface for separable convolution
filters. It only needs an array of filter elements and some flags for quidance. The dip MonadicPoint,

dip MonadicPointData and dip SingleOutputPoint functions only need a function that converts a
single input function to a single output value. Several functions from the ALU library were created
using these convenience functions (like dip Sin and dip BesselJ0).

Example:

DIPlib Programmers Guide 37

#include "diplib.h"

#include "dip_framework.h"

dip_Error dip_Uniform3x3

(

dip_Image in,

dip_Image out,

dip_BoundaryArray boundary

)

{

DIP_FNR_DECLARE("dip_Uniform3x3");

dip_int ii, dim;

dip_IntegerArray border;

dip_FrameWorkProcess process;

DIP_FNR_INITIALISE;

/* allocate the border array */

DIPXJ(dip_ImageGetDimensionality(in, &dim));

DIPXJ(dip_IntegerArrayNew(&border, dim, 1, rg));

/* fill the process array */

process.process = DIP_PROCESS_DO;

process.frameWorkMethod = DIP_FRAMEWORK_DEFAULT_METHOD;

process.frameWorkOperation = DIP_FRAMEWORK_DEFAULT_OPERATION |

DIP_FRAMEWORK_USE_BUFFER_TYPES |

DIP_FRAMEWORK_NO_BUFFER_STRIDE;

process.inputBufferType = DIP_DT_FLOAT;

process.outputBufferType = DIP_DT_FLOAT;

process.frameWorkFunctionType = DIP_FRAMEWORK_SEPARABLE_FILTER;

process.functionParameters = 0;

process.frameWorkFilter.separableFilter = dip__Uniform3x3;

DIPXJ(dip_SeparableFrameWork(in, out, boundary, border,

&process, 0));

dip_error:

DIP_FNR_EXIT;

}

38 Chapter 11. Frameworks

#include "diplib.h"

#include "dip_framework.h"

dip_Error dip__Uniform3x3

(

void *input,

void *output,

dip_int size,

dip_SeparableFilterParameters params

)

{

DIP_FN_DECLARE("dip__Uniform3x3");

dip_int ii;

dip_float *in, *out;

in = input;

out = output;

for(ii = 0; ii < size; ii++)

{

out[ii] = (in[ii - 1] + in[ii] + in[ii + 1])/ 3.0;

}

DIP_FN_EXIT;

}

	 Introduction
	 Conventions
	Include files
	ANSI-C source code conventions

	 Initialisation
	Introduction
	Clean up

	 Error handling
	Writing a DIPlib function
	Error macros

	 Resource management
	The scheme
	Cleanup operations
	Tracking your own resources

	 Memory allocation
	 Arrays, structure hiding and pointers
	Arrays
	Structure hiding and pointers

	 Data types
	Introduction
	The complex data types
	The binary data types

	Dynamic versus static data types
	Data type information from dip_DataType
	Overloading
	Overloading scheme #1
	Overloading scheme #2

	Type iterators

	 Image infrastructure
	The dip_Image structure
	Allocating and de-allocating images
	Writing image processing operations
	The general structure
	Checking the input
	Dealing with in-place operations
	Preparing the output images
	Accessing pixel data

	Convenience functions

	 Boundary conditions
	 Frameworks
	Introduction
	The separable filter framework
	Introduction
	Usage

	The monadic and single output frameworks
	The scan framework
	The pixel table framework
	Framework convenience functions

