
MEX-File Programming
for Image Processing Using DIPimage

dr. ir. Cris L. Luengo Hendriks

Quantitative Imaging Group,
Department of Applied Sciences, Delft
Delft University of Technology October 15, 2017

Contents

1 Introduction 1
1.1 MATLAB Scripting Language Versus C . 1
1.2 The MATLAB Compiler . 1
1.3 Possibilities Within a MEX-File . 1
1.4 Structure of This Document . 2
1.5 Documentation Conventions . 2

2 Vectorizing Algorithms 3
2.1 General Guideline . 3
2.2 Using repmat to avoid loops . 4
2.3 Using reshape and permute to avoid loops . 4
2.4 Generating Coordinate Images . 4
2.5 Using find and Mask Images . 5

3 A Basic MEX-File 6
3.1 The Gateway Routine: mexFunction . 6
3.2 The mxArray . 6

4 Using dip image Objects in a MEX-File 8
4.1 Calling Back to MATLAB . 8
4.2 Retrieving Pixel Data in a Specific Format . 8
4.3 Returning dip image Objects from a MEX-file . 8

5 Other Topics 10
5.1 MATLAB Memory Management . 10
5.2 Compiling MEX-files that Call Libraries . 11
5.3 Debugging Your MEX-file . 11

6 Using DIPlib in Your MEX-file 13
6.1 An Interface Between MATLAB and DIPlib . 13
6.2 Writing a DIPlib Function Within a MEX-file . 15
6.3 Combining DIPlib Calls and MATLAB Functionality in the Same Function 15
6.4 Linking Your MEX-file to DIPlib . 16

III

IV

Chapter 1

Introduction

1.1 MATLAB Scripting Language Versus C

MATLAB scripts are very slow when it comes to loops. In image processing, it sometimes is necessary
to visit each pixel in turn to compute something. This will often require a loop or a set of loops.
Sometimes, however, the loops can be avoided by vectorizing the code. This means that a function is
applied to all pixels at once; MATLAB does the looping implicitly. In the cases where a computation
is not vectorizable, and speed is important, it is possible to re-write the MATLAB script in C. A
MATLAB function written in a compiled language is called a MEX-file (for MATLAB executable
file).

MATLAB version 6.5 (Release 13) introduced just-in-time compilation technology (JIT) that
sped up certain loops in M-files (http://www.mathworks.com/company/newsletters/digest/sept02/-
accel matlab.pdf). In successive versions of MATLAB, JIT has been improving, allowing more complex
loops to be sped up. However, at the time of this writing (MATLAB 7.4, Release 2007a), loops in-
volving objects (such as those that DIPimage uses to encapsulate images) are not sped up, and it is
still worth while to vectorize loops and write C code where speed is essential.

1.2 The MATLAB Compiler

Before the introduction of JIT to MATLAB, that is, before version 6.5 (Release 13), the MATLAB
compiler produced C code from M-files, which could, in turn, be compiled into MEX-files or stand-
alone executables. However, it could not compile M-files that used objects, making it useless with
toolboxes such as DIPimage.

With the introduction of JIT, the makers of MATLAB claim that compiling M-files for speed is no
longer necessary. As a result, the compiler was rewritten to allow the user to create stand-alone
programs out of their M-files, but still using the MATLAB interpreter. This means that now virtually
all M-files can be ”compiled”, but there is no speed advantage, since the compiled code is still being
interpreted.

1.3 Possibilities Within a MEX-File

By making the step to C, complex mathematical expressions cannot be written in a simple manner
any more. However, since it is possible to call back to MATLAB, you can ask it to evaluate any
MATLAB command. This enables the programmer to write efficient code in C without loosing the
flexibility of the interpreted language. It also means that everything you can do from an M-file, you
can also do from a MEX-file.

1

http://www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf
http://www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf

2 Chapter 1. Introduction

1.4 Structure of This Document

The next chapter deals in avoiding loops in MATLAB scripts. It gives a set of tips and hints towards
vectorizing your algorithms. Chapter 3 shows how to write and compile MEX-files, and Chapter 4 deals
with the dip image object. Chapter 5 explains some advanced topics concerning memory management,
compiling complex projects and debugging them. Finally, Chapter 6 explains how to call your own
DIPlib code from MATLAB, and how to use calls to DIPlib functions in your MEX-files. This chapter
is only intended for people that have read the DIPlib Programmers Guide.

1.5 Documentation Conventions

The following conventions are used throughout this manual:

• Example code: in typewriter font

• File names and URLs: in typewriter font

• Function names/syntax: in typewriter font

• Keys: in bold

• Mathematical expressions: in italic

• Menu names, menu items, and controls: “inside quotes”

• Description of incomplete features: in italic

Chapter 2

Vectorizing Algorithms

2.1 General Guideline

It is worth the effort to try to vectorize an algorithm only if it takes too long to run. The term “too
long” is subjective, but should be related to the time that you need to rewrite the algorithm.

A piece of code that is called many times is more interesting to optimize than one that is called only
once. A piece of code that takes up a large portion of the total time of the algorithm is more interesting
to optimize than the rest.

The functions tic and toc can be used to measure the time spend by a function or group of commands.
toc returns the amount of time (in seconds) elapsed since the last call to tic. The function profile

provides a more comprehensive way of profiling your functions.

The general idea of vectorization is that writing

a = a*2;

is much better than writing

for ii=1:prod(size(a))

a(ii) = a(ii)*2;

end

In this case it is obvious how to write the vectorized form of the expression, but in other cases it is
less so. Take as an example a neighborhood operation. A uniform filter can be written in this way
(note that the indexing used assumes in and out are dip image objects):

for ii=1:size(a,1)-2

for jj=1:size(a,2)-2

out(ii,jj) = (in(ii-1,jj-1)+in(ii,jj-1)+in(ii+1,jj-1)+...

in(ii-1,jj)+in(ii,jj)+in(ii+1,jj)+...

in(ii-1,jj+1)+in(ii,jj+1)+in(ii+1,jj+1))/9;

end

end

This is very slow. Another way to do it is this:

out = (in(0:end-2,0:end-2)+in(1:end-1,0:end-2)+in(2:end,0:end-2)+...

in(0:end-2,1:end-1)+in(1:end-1,1:end-1)+in(2:end,1:end-1)+...

in(0:end-2,2:end)+in(1:end-1,2:end)+in(2:end,2:end))/9;

The second method is much quicker, but also requires more memory. In the example above, 9 tempo-
rary images were made, against none in the first method.

Functions such as find, repmat, reshape and permute are often used to avoid writing loops. Much
like the example above, the drawback of using them is the need for more memory.

3

4 Chapter 2. Vectorizing Algorithms

2.2 Using repmat to avoid loops

Imagine you have a MATLAB array in which each row represents a histogram of some sort. You want
to normalize those histograms by dividing each row in the array by its sum. The direct (non-vectorized)
way of doing this is:

for ii=1:size(h,1)

h(ii,:) = h(ii,:)/sum(h(ii,:));

end

This can be vectorized by using repmat. repmat will replicate or tile an array a number of times in any
direction. For example, repmat(x,1,2) is the same as [x,x], and repmat(x,100,300) is the same as
[x,x,x,...;x,x,x,...;...], an array of size size(x).*[100,300]. Thus, the above example can
be written as

h = h./repmat(sum(h,2),1,size(h,2));

sum(h,2) is the sum over the rows of h, and the result is replicated to the same size as h. This matrix
can be used to divide h by.

Another example for the use of repmat is subtracting from each slice in a 3D image the same 2D
image:

a = readim

b = scalespace(a)

b - repmat(a,1,1,size(b,3))

2.3 Using reshape and permute to avoid loops

reshape and permute are used to change the shape of a matrix (or image). This can be useful in
many cases, as in the next example. Imagine you want to manipulate every block of 8-by-8 pixels in
an image. The simplest way to do this is to reshape the image to a 3D stack of 8-by-8 pixel blocks,
do the manipulation on the slices, and then reshape the image to its original size:

b = reshape(a,32,size(a,2)/32,size(a,1));

b = permute(b,[1,3,2]);

b = reshape(b,32,32,prod(size(a))/32/32);

% B is now the reshaped image A. Do the processing on B

b = flipud(fliplr(b));

% Transform B back to the shape of A.

b = reshape(b,32,size(a,1),size(a,2)/32);

b = permute(b,[1,3,2]);

b = reshape(b,size(a))

2.4 Generating Coordinate Images

Especially when creating test images, it is required to do some computations that involve the coordi-
nates of a pixel. These operations can be vectorized by creating images that contain these coordinates.
Like with the use of repmat, this speeds up calculations at the expense of larger memory requirements.
The following functions fall in this category:

MEX-File Programming with DIPimage 5

xx distance along the x-axis from the center of the image.
yy distance along the y-axis from the center of the image.
zz distance along the z-axis from the center of the image.
rr distance from the center of the image.
phiphi angle around the center of the image from the horizontal (0 being to the right).

All of these have the same syntax. They allow both a size vector for the output image, or an image
whose size is to be taken. The center of the image is defined consistently with the Fourier transform
in DIPlib, to the right of the true center if the size is even:

[-4,-3,-2,-1,0,1,2,3]

For example, to create concentric circles, use cos(rr).

The functions meshgrid and ndgrid can be used to accomplish similar things with MATLAB arrays,
instead of dip image objects.

2.5 Using find and Mask Images

To apply operations selectively to certain pixels only, a mask image can be created and used to index
the image. For example, setting all negative pixels to 0 is easy this way:

a(a<0) = 0;

Another example is to multiply the values of all non-zero pixels:

prod(double(a(a~=0)));

(since prod is not defined for the dip image object, we convert the pixel data to doubles first). Note
that by indexing using a mask image, we create a 1D image with the selected pixel values.

m = a~=0;

a(m)

is the same as
I = find(a~=0);

a(I)

The array I above contains indices into the image a, and can be used to index it in the same way
as a mask image. Note that the indices in I go down and then to the right (y+x*size(a,2)). I can
be used when looping is unavoidable, and you want to address each of the pixels in the mask. Thus,
instead of:
m = a~=0; Q = 1;

for ii=0:prod(size(m))-1

if m(ii)

a(ii) = Q;

Q = Q+1;

end

end

you can write

I = find(a~=0);

for ii=1:length(I)

a(I(ii)) = ii;

end

(Note that the above actually is vectorizable, but I couldn’t think of a simple application that is not.)

Chapter 3

A Basic MEX-File

This chapter shows the basic form and elements of a MEX-file written in C. You can also write
MEX-files in C++ and FORTRAN, which is very similar.

3.1 The Gateway Routine: mexFunction

Each MEX-file must have a function called mexFunction, with a pre-defined set of parameters. This
is the function that MATLAB calls when you type the name of the MEX-file at the command prompt.
This is the smallest MEX-file:
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

}

which might or might not compile depending on your compiler. It obviously does nothing. To compile
it, type

mex mymexfile.c

at the MATLAB command prompt. This will create a MEX-file called mymexfile, which you can then
execute in the same way you would execute an M-file. Read “Application Program Interface Guide”
(in the MATLAB manual set) for instructions on customizing the mex script.

The four parameters to mexFunction are nlhs, the number of left-hand side parameters, plhs[], the
array of left-hand side parameters, nrhs, the number of right-hand side parameters, and prhs[], the
array of right-hand side parameters. plhs[] and prhs[] are arrays of pointers to mxArray structures,
described in the next section. It is very important to note the const qualifier on the right-hand side
parameter array. You are not supposed to change the input arrays. Create a new array to write values
to. You can pass an input array as output, but you should not change it.

3.2 The mxArray

The mxArray is the structure that encapsulates a MATLAB array. All of the array types can be
represented in such a structure. The “Application Program Interface Reference” lists many functions
to deal with the mxArray, including functions to create and destroy all types of arrays, and to fill
elements of the structure and cell arrays. These all start with mx, and are too many to mention here.
Just read the online reference.

A second set of functions available to the MEX-file programmer are those that start with mex. They
can be used for the interaction with MATLAB, and contain things like mexErrMsgTxt, mexCallMATLAB,
and mexPrintf. Again, see the reference manual.

The best way to show the usage of the mxArray is through an example. This function is called

6

MEX-File Programming with DIPimage 7

rmsd, and calculates the root mean square value of the input data. The call rmsd(a) is the same as
sqrt(sum(a(:).^2)).

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

double res = 0;

double *in;

int ii, nel;

/* Check for proper number of input and output arguments */

if (nrhs != 1) {

mexErrMsgTxt("One input argument required.");

}

if (nlhs > 1) {

mexErrMsgTxt("Too many output arguments.");

}

/* Check data type of first input argument */

if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) {

mexErrMsgTxt("Input argument must be a real double.");

}

/* Do the calculations */

nel = mxGetNumberOfElements(prhs[0]);

in = mxGetPr(prhs[0]);

for (ii=0; ii<nel; ii++) {

res += *in * *in;

in++;

}

res = sqrt(res);

/* Create an output matrix and put the result in it. */

plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

mxGetPr(plhs[0])[0] = res;

}

The function first checks the number of input and output arguments. Note that nlhs can be zero, but
plhs[0] is always defined. This is because, if no output arguments are given by the user, the output
argument is put into ans.

The second part of the function checks the type of the input matrix. It must be double or else we
cannot handle it (though we could if we wanted to!)

Next we retrieve the number of elements in the array, and the pointer to the first element. We loop
over all elements, adding their square up as we go. Finally, we take the square root.

The last part of the function allocates an mxArray structure, assigns it to the output and puts the
result in it.

By examining the list of mx... functions, you should be able to get an idea of the possibilities open
to you. However, for image processing, not much more than the above statements are necessary.

Chapter 4

Using dip image Objects in a MEX-File

4.1 Calling Back to MATLAB

The dip image object is seen as a structure array inside the MEX-file, but the class name is recog-
nizable. Thus, the call

if (mxIsClass(prhs[0], "dip_image")) ...

can distinguish if the input is an object of type dip image. It is then possible to extract each of
the elements of the structure. But you shouldn’t do this, since it would make your code less robust
against changes in the internal definition of the dip image class. Correct would be to call double in
MATLAB to get an array with doubles. This is then easy to process using mxGetPr:

mxArray *mxdata;

double *data

mexCallMATLAB(1, &mxdata, 1, &prhs[0], "double");

data = mxGetPr(mxdata);

If mxdata contains complex data, you also would want to call mxGetPi.

4.2 Retrieving Pixel Data in a Specific Format

If you don’t want to convert the pixel data into doubles, but single float values, call the function
single instead of double. Other available functions are: uint8, uint16, uint32, int8, int16 and
int32. Finally, the function dip array will return an array of the type that was originally there,
without any conversions. Next call mxGetClassID to extract the data type, mxIsLogical will return
true if the image was binary, and mxGetData returns a void pointer to the data (you will have to cast
it to the appropriate data type). Note that it is difficult to write a function that can handle any data
type; it is better to convert to singles or doubles. Finally, mxIsComplex returns true if there is an
imaginary part, which can be obtained with mxGetImagData.

4.3 Returning dip image Objects from a MEX-file

Using the same syntax as before, we can convert any numerical array into an object of type dip image

by calling MATLAB:

mexCallMATLAB(1, &plhs[0], 1, &mxdata, "dip_image");

To create a dip image of another type is a bit more tricky:

mxArray *args[2];

args[0] = mxdata;

args[1] = mxCreateString("sfloat");

mexCallMATLAB(1, &plhs[0], 2, args, "dip_image");

8

MEX-File Programming with DIPimage 9

Furthermore, things like concatenating images into an image array, creating color images, doing arith-
metic with images or applying any previously defined function to an image should be done through
callbacks to MATLAB. This is the more efficient way of doing them (in terms of your time).

It is best if you only re-write in C that portion of you algorithm that is too slow. Make a private
MEX-file that you call at the substituted portion of your algorithm. This way, only you have to call
it, and you don’t need waste too much time on correctly parsing all the (possibly wrong) input values.
Besides, MATLAB gracefully kills any MEX-file that produces segmentation errors, so you really don’t
need to worry about inputs.

Chapter 5

Other Topics

5.1 MATLAB Memory Management

MATLAB handles all memory for you. All you need to do is create arrays; they will be destroyed
automatically when your function returns or when you call mxErrMsgTxt, which quits your function.
However, it is possible to delete temporary arrays halfway a calculation to free up memory for other
arrays. It is also possible to create static arrays, which stay in memory from one call to the next.

5.1.1 Removing Arrays from Memory

A call to mxDestroyArray removes both the mxArray structure and the associated data. You should
never destroy an array passed to you by MATLAB in the prhs[] array, and neither should you destroy
an array you want to pass back to MATLAB through the plhs[] array. Arrays that you don’t destroy
explicitly will be destroyed by MATLAB upon finishing the execution of your mexFunction.

5.1.2 Allocating Memory for Other Purposes

mxMalloc, mxCalloc, mxRealloc and mxFree should be used inside MEX-files instead of their C
counterparts (malloc, calloc, realloc and free). Memory allocated through these functions will be
freed automatically when your function ends (even if your function ends unexpectedly).

Memory allocated using these functions can be inserted into an mxArray as the real or imaginary part
of the data (see mxSetPr or mxSetData and mxSetN or mxSetDimensions).

5.1.3 Making Arrays Persistent (Static)

In the event that you want some data to be available from one function call to the next, you can create
a persistent mxArray, which won’t be freed until you do so explicitly. You are responsible for doing so;
if you don’t, MATLAB will leak memory. By registering a function with mexAtExit, you can make
sure that the mxArray will be freed when your MEX-file is cleared (which happens when the user
types clear mex or clear all at the MATLAB command prompt). If you don’t want your function
to be cleared, you can lock it with mexLock. The next example illustrates this. It is a function that
generates a random value (calling MATLAB to do so!), and stores it in a persistent array. Every time
the function is called, the same value is returned. However, after clearing the MEX-file, the value is
destroyed, and a new one must be generated. Enabling the call to mexLock causes the array never to
be cleared (until MATLAB is closed, that is).

Take care with locked MEX-files: since MATLAB cannot clear them, it is not possible to recompile
them in the same MATLAB session (you have to quit MATLAB to free the MEX-file). Call mexUnlock
to unlock the file (it’s a good idea to have a special syntax for your function that causes it to unlock

10

MEX-File Programming with DIPimage 11

itself, so that you can recompile it during development).

#include "mex.h"

mxArray* value=NULL;

void AtExit(void)

{

if (value) {

mexPrintf("Clearing data!\n");

mxDestroyArray(value);

}

}

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

if (!value) {

mexCallMATLAB(1,&value,0,NULL,"rand");

mexMakeArrayPersistent(value);

mexAtExit(AtExit);

/* optionally: mexLock(); */

}

plhs[0] = value;

}

Note how MATLAB correctly handles indirect copies to the array value (it is both put into the output
variable and stored in the MEX-file itself).

It is also possible to make memory allocated with mxMalloc, mxCalloc, etc. to be persistent.

5.2 Compiling MEX-files that Call Libraries

If your MEX-file depends on other C sources or libraries, add their names on the call to mex. Libraries
can be added under UNIX with the familiar -l<file> syntax. The first C source dictates the name
of the resulting MEX-file. Use the -output <name> option to specify a function name.

5.3 Debugging Your MEX-file

Compile your MEX-file with the -g option (debugging symbols enabled).

On UNIX machines, load MATLAB with the -D switch:

matlab -Ddbx

(or whatever name of debugger you use). This causes MATLAB to be loaded within the debugger.
Now issue a “run” command to let MATLAB start. In MATLAB, now type

dbmex on

When you call a function in a MEX-file, the debugger will appear. You can also set breakpoints and
what not.

On Windows machines, start your debugger, and run MATLAB from it (MATLAB has no debugging
symbols, you will get a warning for this). Now set breakpoints (either in the code, or “on image load”

12 Chapter 5. Other Topics

or something). You also need to set the debugger to stop on handled exceptions, since MATLAB
handles all exceptions your MEX-file generates (segmentation violations and the like). If you now run
your function from MATLAB, the debugger should come into action.

The book “Application Program Interface Guide” from the MATLAB manual set gives more detailed
information on this topic.

Chapter 6

Using DIPlib in Your MEX-file

This chapter assumes you are somewhat familiar with DIPlib. We recommend that you first read
the “DIPlib Programmers Guide”. This chapter deals with two separate problems: adapting your
MEX-file to call a function in DIPlib (which involves everything from converting MATLAB mxArray

objects to the appropriate DIPlib structures, to linking DIPlib with your MEX-file), and writing your
own DIPlib-style code within a MEX-file.

6.1 An Interface Between MATLAB and DIPlib

When linking a MEX-file to DIPlib, it is necessary to link to libdml mlvX X as well. It contains all
the functionality needed to link MATLAB and DIPlib. This library is dependent on the version of
MATLAB it is compiled for, hence the ‘X X’ in the file name. For some architectures there’ll be only
one libdml file, for others there will be multiple. To know which library to link to, call the function
dip dmllibfile from within MATLAB. It will return the full file name, including path, of the library
to link to.

This section discusses some of the functions defined in this interface.

6.1.1 DIPlib-Style Resource Management and Error Handling

When creating a mexFunction that uses DIPlib functionality, it is recommended to use a set of
macros that reproduces DIPlib’s own resource management and error handling. This is, of course, not
necessary, but makes things a bit easier. The code would look like this:

#include "dml_dipmex.h"

void mexFunction (int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]) {

int arg1, arg2;

...

DML_ERROR_INIT;

...

DMLXJ (dip_function (arg1, arg2, ...));

...

dml_error:

DML_ERROR_EXIT;

}

You will immediately see the similarity to DIPlib code.

DML ERROR INIT initializes the error management structures and allocates a resources structure named

13

14 Chapter 6. Using DIPlib in Your MEX-file

rg. DMLXJ is similar to DIPXJ, and jumps to the dml error label if the DIPlib function returns an
error state. DML ERROR EXIT will deallocate any memory registered to rg and print the function call
stack to the MATLAB window in case an error occurred. There is also a DMLSJ defined, to substitute
DIPSJ. Do not use any of the DIPxx macros, though, since they assume different internal variable
names and labels.

dml dipmex.h includes diplib.h and mex.h, so you do not need to include these explicitly.

6.1.2 Converting MATLAB mxArray Objects to DIPlib Objects

There are various data types that are interesting to convert to and fro between DIPlib and MATLAB.
Foremost are images. There are four macros that deal with this, assuming you are using the above-
mentioned DML ERROR INIT and related macros. DML MEX2DIP(ma,im) will convert the MATLAB array
or dip image object ma into a DIPlib dip Image structure im. To convert it back to a MATLAB array
use DML DIP2MLA(im,ma), and to convert it back to a dip image object use DML DIP2MEX(im,ma). Fi-
nally, to create an (unspecified) DIPlib image use DML GENDIP IMAGE(im) (which calls dip ImageNew()

in such a way that the image, when forged, will be allocated by MATLAB). All of these macros avoid
copying of the image data by making DIPlib use memory allocated by MATLAB. This is sadly not
possible for complex image data. MATLAB and DIPlib differ too much in the way this data is stored
to be able to share it directly. Therefore, complex images are copied each time one of these macros is
called.

For other common DIPlib types, such as arrays and enumeration types, there are also macros. However,
these were written to simplify the task of creating a glue layer between DIPlib and MATLAB, and
are therefore not as flexible as the macros mentioned above. The ones converting MATLAB data
to DIPlib require an input parameter number (the n in prhs[n]) and a variable name. See the file
dml macros.h for a complete listing. You can also copy code from this file instead of using the macros,
which will prove more flexible.

MEX-File Programming with DIPimage 15

As an example, this is the code for the MEX-file dip gauss:

#include "dml_dipmex.h"

#include "dip_linear.h"

#include "dip_globals.h"

void mexFunction (int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]) {

dip_Image in;

dip_Image out;

dip_BooleanArray process;

dip_FloatArray sigmas;

dip_IntegerArray parOrder;

DML_ERROR_INIT;

DML_CHK_NARGSIN (4);

DML_CHK_NARGSOUT (1);

DML_2DIP_IMAGE (0, in);

DML_GENDIP_IMAGE (out);

DML_2DIP_BOOLEANARRAY (1, process);

DML_2DIP_FLOATARRAY (2, sigmas);

DML_2DIP_INTEGERARRAY (3, parOrder);

DMLXJ (dip_Gauss (in, out, NULL, process, sigmas, parOrder, -1));

DML_2MEX_IMAGE (0, out);

dml_error:

DML_ERROR_EXIT;

}

6.2 Writing a DIPlib Function Within a MEX-file

The C source file for your MEX-file can, of course, contain other function definitions as well. You
can write a DIPlib function within the same source file without any problem. You can also write this
function in its own C source file, and compile both when creating the MEX-file.

The DIPlib function should not use the DML... macros described above, but the DIP... macros
described in the “DIPlib Programmers Guide”. It should also avoid the use of any MATLAB functions.

6.3 Combining DIPlib Calls and MATLAB Functionality in the Same Function

If you have a function that does much more processing than only calling a DIPlib function, you might
not want to use the dml error label at the end. In this case, you will not be able to use the DMLXJ

16 Chapter 6. Using DIPlib in Your MEX-file

macro. Do this instead:
void mexFunction (int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]) {

int arg1, arg2;

DML_ERROR_DECLARE

... /* some non-DIPlib code */

DML_ERROR_START

*errorNext = dip_function ();

*errorNext = dip_function ();

*errorNext = dip_function ();

DML_ERROR_FINISH

... /* some more non-DIPlib code */

DML_ERROR_START

*errorNext = dip_function ();

DML_ERROR_FINISH

... /* even more non-DIPlib code */

}

DML ERROR FINISH causes your function to exit with an error message, and clears all resources regis-
tered in rg.

The macros DML MEX2DIP(ma,im), DML DIP2MLA(im,ma), DML DIP2MEX(im,ma) and
DML GENDIP IMAGE(im) are not available in this case. Instead, use the functions
dml mex2dip(ma,&im,rg), dml dip2mla(im,&ma), dml dip2mex(im,&ma) and dml newdip(&im,rg).

Other than these macros, there are no reason not to combine DIPlib code and MATLAB code in one
function.

6.4 Linking Your MEX-file to DIPlib

The mex command, as discussed in Chapter 3, will compile your MEX-file. You will need to give it
some extra parameters so that it will link to DIPlib and the libdml mlvX X interface library, and so
that it will be able to find the DIPlib include files:
mex mymexfile.c -I/dip/Linux/include -L/dip/Linux/lib ...

-ldml_mlvX_X -ldipio -ldip

(make sure you use the right paths). You might also need to add the math library, with -lm. Under
Windows, for older versions of MATLAB, this is a bit different:

mex mymexfile.c -Ic:\dip\include c:\dip\bin\libdml_mlvX_X.lib ...

c:\dip\bin\libdip.lib c:\dip\bin\libdipio.lib

(again, fill in the right paths).

If you have more than one C source file, just put them all on the mex command line:

mex mymexfile.c somefunction.c morestuff.c etc.

The MEX-file will get the name of the first C-file. If you want to change this name, use the -output

MEX-File Programming with DIPimage 17

option:

mex file1.c file2.c file3.c -output mymexfile etc.

	 Introduction
	MATLAB Scripting Language Versus C
	The MATLAB Compiler
	Possibilities Within a MEX-File
	Structure of This Document
	Documentation Conventions

	 Vectorizing Algorithms
	General Guideline
	Using repmat to avoid loops
	Using reshape and permute to avoid loops
	Generating Coordinate Images
	Using find and Mask Images

	 A Basic MEX-File
	The Gateway Routine: mexFunction
	The mxArray

	 Using dip_image Objects in a MEX-File
	Calling Back to MATLAB
	Retrieving Pixel Data in a Specific Format
	Returning dip_image Objects from a MEX-file

	 Other Topics
	MATLAB Memory Management
	Compiling MEX-files that Call Libraries
	Debugging Your MEX-file

	 Using DIPlib in Your MEX-file
	An Interface Between MATLAB and DIPlib
	Writing a DIPlib Function Within a MEX-file
	Combining DIPlib Calls and MATLAB Functionality in the Same Function
	Linking Your MEX-file to DIPlib

