
DIPimage User Manual

dr. ir. Cris L. Luengo Hendriks

prof. dr. ir. Lucas J. van Vliet

dr. dipl. phys. Bernd Rieger

dr. ir. Michael van Ginkel

ing. Ronald Ligteringen

Quantitative Imaging Group,
Department of Applied Sciences, Delft
Delft University of Technology October 15, 2017

Contents

1 Introduction 1
1.1 The DIPimage toolbox . 1
1.2 The DIPlib library . 1
1.3 Image Processing . 1
1.4 Documentation Conventions . 2
1.5 Acknowledgments . 2

2 Installing DIPimage 3
2.1 Windows Installation . 3

2.1.1 Automatic Installation . 3
2.1.2 Manual Installation . 3

2.2 UNIX Installation . 4
2.3 MacOS X Installation . 5

2.3.1 Loading libraries in Matlab . 5
2.3.2 Loading scripts in Matlab . 6

3 Getting Started 7
3.1 Starting the GUI . 7
3.2 Loading and Displaying an Image . 7
3.3 Pre-processing the Image . 8
3.4 Measuring . 9
3.5 Where to Go from Here . 11

4 The dip image Object 12
4.1 Creating a dip image Object . 12
4.2 Displaying dip image Objects . 13
4.3 Operations on dip image Objects . 13
4.4 Dimensions . 14
4.5 Indexing Pixels . 15
4.6 Image Arrays . 16
4.7 Tensor Images . 17
4.8 Color Images . 17
4.9 A Note on the end Method in Indexing . 18
4.10 Special Functions . 18
4.11 Review of the Differences Between a dip image and a Matlab Array 23

5 The dip measurement Object 25
5.1 Extracting Measurement Data . 25
5.2 Other Information on the dip measurement Object . 25
5.3 Combining Measurement Data . 26
5.4 Adding Measurement Data . 26
5.5 Converting a dip measurement Object to a dataset Object 26
5.6 Creating a dip measurement Object with Your Own Data 27

III

IV Contents

5.7 Backwards Compatibility . 27

6 Figure Windows 28
6.1 The Figure Window Menus . 28
6.2 Using the Mouse in Figure Windows . 29
6.3 Using the Keyboard in Figure Windows . 30
6.4 Linking Variables with Figure Windows . 30
6.5 Setting the Position of Figure Windows . 31

7 Toolbox Functions 32
7.1 The GUI: dipimage . 32
7.2 The dipshow Function . 32
7.3 Figure Window Support: dipmapping . 33
7.4 Figure Window Support: diptruesize . 34
7.5 Figure Window Support: diptest, dipzoom, et al. 34
7.6 Figure Window Support: diplink . 34
7.7 Creating, Linking and Clearing Figure Windows: dipfig and dipclf 35
7.8 Toolbox Preferences: dipsetpref and dipgetpref . 35
7.9 Interactive Tools: dipcrop, dipgetcoords, et al. 35
7.10 Other 3D Visualization Tools: dipanimate, dipisosurface, dipprojection 36
7.11 Image Processing Functions . 36
7.12 Adding Functions to the GUI . 36
7.13 Automatic Parameter Parsing . 41

8 Customizing the DIPimage Environment 43
8.1 Figure Windows . 43
8.2 Graphical user Interface . 43
8.3 Initialization File . 44
8.4 Other Settings . 44

9 Low-level DIPlib Interface 51
9.1 The Setup . 51
9.2 Calling DIPlib Functions . 51
9.3 Example Function Call . 52

10 DIPimage and the Matlab Compiler 54
10.1 The Matlab Compiler . 54
10.2 Compiling an M-file that uses DIPimage . 54
10.3 Deploying your compiled program . 55

Chapter 1

Introduction

1.1 The DIPimage toolbox

Matlab is a software package designed for (among other things) data processing. It contains a huge
amount of numerical algorithms, and very good data-visualization abilities. This makes it adequate
for image processing. However, Matlab’s virtues do not end there. It is also an ideal tool for rapid
prototyping, since it handles a compact but simple notation and it is very easy to add functions to
it. The drawback is that Matlab, since it is an interpreted language, is slow for some constructs like
loops; it also is not very efficient with memory (for example, all Matlab data uses 8-byte floats).
This makes it a bit less useful beyond the prototyping stage.

DIPimage is a Matlab toolbox for doing image processing, and is based on the image-processing
library DIPlib. It is meant as a tool for research as well as teaching image processing at various levels.
It is not meant as an industrial image-processing package, which should heavily depend on speed and
memory-efficiency. Instead, this toolbox is made with user-friendliness, ease of implementation of new
features, and compactness of notation in mind.

Most arithmetic operations are done by Matlab. However, implementing image-processing filters
usually requires several nested loops (depending on the dimensionality of the input data), which is
not very efficient. Therefore, we based this toolbox on DIPlib. It provides all filtering and transform
functions and is the heart of the DIPimage toolbox.

1.2 The DIPlib library

DIPlib is a scientific image-processing library written in C. It contains a large number of functions for
processing and analyzing multi-dimensional image data. The library provides functions for performing
transforms, filter operations, object generation, and statistical analysis of images. It is also very
efficient (with both memory and time).

The Matlab interface to DIPlib is a simple “glue” layer, which allows calling the C functions in the
library by converting the Matlab data to a form used by the library. Only a few functions have
added functionality in the interface. Using these functions therefore is much like using the C functions
directly. This is not adequate for the beginning image analyst, who is better off using the DIPimage
toolbox functions instead.

More information on DIPlib can be found at:
http://www.diplib.org/.

1.3 Image Processing

This manual is meant as an introduction and reference to the DIPimage toolbox, not as a tutorial on
image processing. Although Chapter 3 shows some image-processing basics, it is not complete. We

1

http://www.diplib.org/

2 Chapter 1. Introduction

refer to “The Fundamentals of Image Processing”, an online image-processing course, which can be
found at:
ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf.

1.4 Documentation Conventions

The following conventions are used throughout this manual:

• Example code: in typewriter font

• File names and URLs: in typewriter font

• Function names/syntax: in typewriter font

• Keys: in bold

• Mathematical expressions: in italic

• Menu names, menu items, and controls: “inside quotes”

• Description of incomplete features: in italic

1.5 Acknowledgments

DIPlib was written mainly by Michael van Ginkel, Geert van Kempen, Cris Luengo and Lucas van
Vliet; the Matlab interface to DIPlib was written by Cris Luengo, with help from Michael van Ginkel.
Bernd Rieger, Tuan Pham, Kees van Wijk and Frank Faas have contributed functionality.

The DIPimage toolbox was written mainly by Cris Luengo, Lucas van Vliet, Bernd Rieger and Michael
van Ginkel. Tuan Pham, Kees van Wijk, Judith Dijk, Geert van Kempen and Peter Bakker have
contributed functionality.

DIPlib and the DIPimage toolbox are being developed at the Quantitative Imaging Group, Delft
University of Technology. Lucas van Vliet is the project supervisor.

ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf

Chapter 2

Installing DIPimage

This toolbox requires Matlab 5.3/R11 or later, though the official distributions are compiled
with later versions of Matlab and do not run on earlier versions. The download page on the
DIPimage web site should specify the versions of Matlab a specific distribution is compatible with:
http://www.diplib.org/download Some functionality is only available on later versions of Matlab,
but this is an exception.

The bulk of the toolbox is platform-independent. This means that the distributions for the various
platforms contain exactly the same functionality, with very few exceptions. However, you do need to
obtain the distribution specific to your platform, because the toolbox contains code compiled to work
on a specific platform. You can install the same version of the toolbox for different platforms to the
same directory. The files that have the same name in the various distributions are identical (assuming
they are of the same release!), the platform-specific files have unique names and paths. For example,
on Windows you can install both the 32-bit and 64-bit versions of the toolbox into the same directory.

2.1 Windows Installation

2.1.1 Automatic Installation

If you have an earlier version of DIPimage installed, it is important that you remove it before installing
this version. Previous versions installed with the automatic installation tool can be uninstalled through
the program management tool in Windows. A previous version installed manually should be unin-
stalled by either deleting or renaming the whole directory, and undoing any other changes made during
installation.

To install DIPimage, simply run the installation program and follow the directions in it. The tool will
tell you to start Matlab and type the command

run('C:\Program Files\dip\dipstart.m')

where C:\Program Files\dip\ is the directory to which you installed DIPimage. The script
dipstart.m, executed this way, contains three commands needed to initialise the toolbox (two if
you didn’t install the images). These must be executed every time you start Matlab. You can
modify (or create) a file startup.m in the directory to which Matlab starts up, to contain the run

command above. The script startup.m is executed automatically every time Matlab starts.

Optionally, you can add the demo directory to your path too:

addpath C:\dip\common\dipimage\demos

It contains a few demos that show how to use different features of the toolbox.

2.1.2 Manual Installation

If you have an earlier version of DIPimage installed, it is important that you remove it before installing
this version. Previous versions installed with the automatic installation tool can be uninstalled through

3

http://www.diplib.org/download

4 Chapter 2. Installing DIPimage

the program management tool in Windows. A previous version installed manually should be unin-
stalled by either deleting or renaming the whole directory, and undoing any other changes made during
installation.

Unzip the distribution file dipimage X.X XXX winXX.zip to any destination (say, C:\). It will generate
a directory C:\dip with two sub-directories: C:\dip\common\ and C:\dip\win32\ or C:\dip\win64\,
depending on the version you downloaded. The first one contains the Matlab toolbox, the second
one the DIPlib library files, support libraries and include files.

You also might want to unzip the images file images.zip to the C:\dip directory. It will create a
directory C:\dip\images\ with some default images.

To start using DIPimage, do the following in Matlab:

addpath('C:\dip\common\dipimage')

dip_initialise

dipsetpref('imagefilepath','C:\dip\images')

(make sure to substitute ’C:\dip\’ for the name of the directory where you unzipped the distribution
file). This will add the DIPimage toolbox and low-level DIPlib interface to the beginning of the path,
initialize DIPlib and set the default directory where DIPimage will look for images.

You can add these lines to your startup.m file, which should be in your working directory. That way,
DIPimage will be ready to use each time you start Matlab.

Optionally, you can add the demo directory to your path too:

addpath C:\dip\common\dipimage\demos

It contains a few demos that show how to use different features of the toolbox.

Note: On versions of Matlab since version 7.2, it is no longer necessary for Windows to be able to
find the DIPlib library files (unless you are creating a stand-alone executable using DIPlib, but that’s
a different topic altogether). If you have a version of Matlab that is older than 7.2, and happen
to find a version of DIPimage that works with your version of Matlab (these are no longer sup-
ported), you will need to modify the PATH environment variable to contain the C:\dip\win32\lib\ or
(C:\dip\win64\lib\) directory. You must modify this environment variable before starting Matlab,
and possibly must restart Windows for this change to take effect.

2.2 UNIX Installation

If you already have a version of DIPimage installed, rename the directory it is in, so that you will
still have the old version if the installation of the new version fails. Untar the distribution file. It
will create a directory dip/ with a number of subdirectories. If you untarred the file in the directory
/something/, you now have a directory /something/dip/. To get DIPimage running, there are a
number of things that you must do:

1. Matlab must be told where it can find DIPlib, a shared library, that is used by DIPimage. You
can do this by creating the environment variable LD LIBRARY PATH, or extending it if it already
exists. As the name suggests, it holds a collection of paths. The entries are separated by colons,
i.e. ‘:’. Which entry you should add, depends on the type of machine you are working on:

• On Solaris add: /something/dip/SunOS/lib/:/something/dip/SunOS32/lib/

• On Linux add: /something/dip/Linux/lib/

• On 64-bit Linux add: /something/dip/Linuxa64/lib/

2. If you did not do so before: download the separate tar or zip file containing some test images. In-

DIPimage User Manual 5

stall them somewhere on your system. Let us assume that you installed them in /herebeimages/.

3. Add the following lines to your startup.m (preferably in $HOME/matlab/):

addpath('/something/dip/common/dipimage')

dip_initialise

dipsetpref('imagefilepath','/herebeimages')

This will add the DIPimage toolbox and low-level DIPlib interface to the beginning of the path,
initialize DIPlib and set the default directory where DIPimage will look for images.

Optionally, you can add the demo directory to your path too:

addpath /something/dip/common/dipimage/demos

It contains a few demos that show how to use different features of the toolbox.

2.3 MacOS X Installation

If you already have a version of DIPimage installed, rename the directory it is in, so that you will
still have the old version if the installation of the new version fails. Extract the distribution file. It
will create a directory dip/ with a number of subdirectories. We suggest you place this directory
in /Applications/, so that you now have a directory /Applications/dip/1. To get DIPimage
running, there are a number of things you must do. At first Matlab needs to find the right libraries.
The configuration depends on the version of MacOS X. Furthermore Matlab needs to find all the
DIPimage scripts. This configuration is done inside Matlab and is OS independent.

2.3.1 Loading libraries in Matlab

Before Yosemite (OSX 10.10)

1. Create a file /etc/launchd.conf with the following line (or add the following line if you already
have this file):

setenv DYLD_LIBRARY_PATH /Applications/dip/Darwin/lib/

This is a plain text file, and it is hidden, so you need to create it through the Terminal or an
application that allows creating and editing hidden files. You need to have root privileges to
create and edit it. A simple way of making this file is to type at the Terminal prompt:

$ sudo bash -c "echo setenv DYLD_LIBRARY_PATH

/Applications/dip/Darwin/lib/ >> /etc/launchd.conf"

(This should all be on the same line.)

If you already had defined the DYLD LIBRARY PATH environment variable in /etc/launchd.conf,
you can add this new directory using the colon (“:”) to separate it from the other directory.

Next, either reboot or type the following command in Terminal:

$ launchctl < /etc/launchd.conf; sudo launchctl < /etc/launchd.conf

Yosemite (OSX 10.10) and higher

As a safety precaution Apple has disabled the use of the DYLD LIBRARY PATH and /etc/launchd.conf

completely. There are two possible methods to ensure Matlab will find the DIPlib and DIPimage
libraries:

1if you choose to install DIPimage in a different location change this in the following instuctions accordingly

6 Chapter 2. Installing DIPimage

use the automatic finding of the libraries [preferred] Nothing has to be done on the command
line. Only follow the instructions below in Loading scripts in Matlab.

install libs in system library path This must be done on the command line; you can use the
’Terminal’ application. Copy (or move) all the libraries from /Applications/dip/Darwin/lib

to /usr/local/lib. Note that this method does not allow for multiple DIPlib versions and will
set the DIPlib version globally for all users on the computer.

2.3.2 Loading scripts in Matlab

1. If you did not do so before: download the separate tar or zip file containing some test im-
ages. Install them somewhere on your system. Let us assume that you installed them in
/Applications/dip/images/.

2. Add the following lines to your startup.m (preferably in $HOME/matlab/):

addpath('/Applications/dip/common/dipimage')

dip_initialise

dipsetpref('imagefilepath','/Applications/dip/images')

This will add the DIPimage toolbox and low-level DIPlib interface to the beginning of the path,
initialize DIPlib and set the default directory where DIPimage will look for images.

Optionally, you can add the demo directory to your path too:

addpath /something/dip/common/dipimage/demos

It contains a few demos that show how to use different features of the toolbox.

Chapter 3

Getting Started

To show you around DIPimage, we will work through a simple image-processing application. Not all
steps will be written out explicitly, since it is our goal to make you understand what is going on, and
not to have you copy some commands and stare in amazement at the result.

The goal of this application is to do some measurements on an image of some rice grains, then analyze
these measurements.

3.1 Starting the GUI

Type the following command at the Matlab prompt:

dipimage

This should start the DIPimage GUI. A new window appears to the top-left of the screen, which
contains a menu bar. Spend some time exploring the menus. When you choose one of the options, the
area beneath the menu bar should change into a dialog box that allows you to enter the parameters
for the filter you have chosen. See also Sections 7.1 and 8.2 for more info on the GUI.

3.2 Loading and Displaying an Image

Before you can use these functions, you first need to load some image. The first menu is called “File
I/O”, and its first item “Read image (readim)”. Select it. Press the “Browse” button, and choose
the file rice.tif. Change the name for the output variable from ans to a, then press the “Execute”
button. Two things should happen:

1. The image ‘rice’ is loaded into the variable a, and displayed to some figure window:

7

8 Chapter 3. Getting Started

2. The following lines (or something very similar) appear in the command window:

>> a = readim('c:\matlab\toolbox\dipimage\images\rice.tif','')

Displayed in figure 1

This is to show you that the same would have happened if you would have typed that command
directly yourself, without using the GUI. Try typing this command:

a = readim('rice')

The same image should be loaded into the same variable, and again displayed to some window. Note
that we left off the ’.tif’ ending of the filename. readim can find the file without you having to
specify the extension. We also didn’t use the second argument to the readim function, since ’’ is
the default value. Finally, by not specifying a path to the file, we asked the function to look for it
either in the current directory or in any of the directories specified by the ImageFilePath setting (see
Section 8.4).

To avoid having the image displayed in a window automatically, add a semicolon to the end of the
command:

a = readim('rice');

3.3 Pre-processing the Image

You will have noticed the heavy background shading in this image. If we try to segment it directly,
the results will be unsatisfactory (as you can try out later). Let’s do some background correction.
The idea is to use a low-pass filter that removes the objects while keeping the slow change in the
background. Choose “Filters” and “Gaussian filter”. Select a as the input image, and choose a name
for your background image (we use bg). Finally, choose a suitable value for the filter parameter, such
that the objects are removed and the background shading is left. Try different settings until you are
satisfied with the result.

Once we have the background image, we can subtract it from the original image. It is very easy to do
arithmetic with images in Matlab. Type

a = a - bg

The new image should be displayed to a figure window, but it looks very dark. This is because the
pixels have lower values now, some even have negative values. By default, images are displayed by
mapping the value 0 to black, and the value 255 to white. You can change this by choosing a different
mapping mode. Open the “Mappings” menu on the figure window, and choose “Linear stretch” (try
out the other modes too).

DIPimage User Manual 9

The “Actions” menu allows you to choose what the mouse should do on the figure window. Select
“Pixel testing”, and press the mouse button while pointing somewhere in the image (keep the button
down). The figure caption changes to show the coordinates of the mouse in the image and the value of
the pixel at those coordinates. Try moving the mouse while holding the button down. Another option
on the “Actions” menu (“Zoom”) is used to zoom in on an image. Try it out too. See Chapter 6 for
more information on the figure windows.

The next step is to segment the image. We need to find some threshold that distinguishes the grains of
rice from the background. To find it, we can examine the histogram of the image. Choose “Histogram”
on the “Statistics” menu, or type

diphist(a,[])

The graph shows two peaks, one for the background, one for the objects. Find a value in between
for the threshold. To do the segmentation, compare all pixel values with the threshold, which can be
done in this way:

b = a > 20

This results in a binary image (logical image, containing values of “true” and “false”, coded as 1 and
0), with ones at the pixels that belong to the objects. This image is displayed in red and black to
emphasize that it is a binary image rather than a grey-value image with only two different grey values.
Binary images have different characteristics than grey-value images, for example they can be used to
index into other images, just like Matlab’s logical arrays.

The final step is to remove the grains that do not completely lie inside the image. We can do this
using a binary operation. Find and execute the “Remove edge objects” function in the menu system.
What it does is the same as the bpropagation function, with an empty image as a seed image, and
the edge condition set to 1. To create an empty seed image use the newim function. Thus, these two
commands are equivalent:

b = b - bpropagation(newim(b,'bin'),b,0,2,1)

b = brmedgeobjs(b,2)

3.4 Measuring

Before we can start measuring, it is convenient to have a label image. Select the “Label objects” item
on the “Segmentation” menu, and select the new object image as the input. The result (name the
image lab) is a labeled image where the pixels belonging to each object have a different value. In the
window of the new image, select the “Labels” mapping. Now each grey value gets a different color.
Examine the pixel values to see how the objects are labeled.

10 Chapter 3. Getting Started

Now do the measuring. We will measure the object area in pixels (’size’) and the Feret diameters
(’feret’), which are the largest and smallest diameters, and the diameter perpendicular to the
smallest diameter.

data = measure(lab,[],{'size','feret'});

measure returns an object of type dip measurement, which is explained further in Chapter 5. Leaving
the semi-colon off the previous command, the complete measurement results are displayed at the com-
mand prompt. Furthermore, data(1) is the measurement results for object with label 1, data.feret
is an array containing all the Feret diameters, and data(1).feret are the Feret diameters for object
number 1.

To extract the measurements done on all objects and put them in an array, type

feret = data.feret;

sz = data.size;

This gives us arrays with the measured data. Matlab allows all kinds of statistics and analysis on
these arrays. For example, mean(sz) gives the mean grain area.

We will use scatter to find some correlation between the diameters and the area of the grains. Let’s
start by plotting the length of the grains against their width:

figure; scatter(feret(1,:),feret(2,:))

Apparently, they are mostly unrelated. Let’s try a relation between the length and the surface area:

scatter(feret(1,:),sz)

These appear to be more related, but, of course, the area also depends on the width of the grains. If
we assume that the grains are elliptic, we know that the area is 1

4πd1d2. Let’s plot the calculated area
against the measured area:

scatter(sz,pi*feret(1,:).*feret(2,:)/4)

Wow! That is a linear relation. We can add a line along the diagonal to see how much the ratio differs
from 1 (the other commands are to make the figure look prettier):

hold on , plot([180,360],[180,360],'k--')

axis equal , box on

xlabel('object area (pixels^2)')

ylabel('\pi{\cdot}a{\cdot}b (pixels^2)')

DIPimage User Manual 11

The actual slope can be computed by:

f = sz'\calc'

(this is the lest-squares solution to the linear equation sz’*f = calc’; the apostrophes transpose the
vectors to create column vectors).

3.5 Where to Go from Here

If you are new to Matlab, it would be a good idea to read the “Getting Started with Matlab”
manual. If you are new to image processing, you can read “The Fundamentals of Image Processing”,
an online image-processing course, which can be found at:
ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf.

Before you start using this toolbox, we recommend that you read Chapter 4 (at least Section 4.11). It
contains very important information on the dip image object and its usage. Since it is not the same
as a regular Matlab array, it can be a bit confusing at first.

ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf

Chapter 4

The dip image Object

Images used by this toolbox are encapsulated in an object called dip image. Objects of this type are
unlike regular Matlab arrays in some ways, but behave similarly most of the time. This chapter
explains the usage of these objects.

4.1 Creating a dip image Object

To create a dip image object, the function dip image must be used. It converts any numeric array
into an image object. The optional second argument indicates the desired data type for the image.
The pixel data will be converted to this type if possible, or else an error will be generated (for example,
it is illegal to convert complex data to a real type, since there are many ways this can be accomplished;
it is necessary to do this explicitly). The valid data types are listed in Table 4.1. This table also lists
some alternative names that are mapped to the names on the left; these are just to make specifying
the data type easier.1

For example,

a = dip_image(a,'sfloat');

will convert the data in a to single (4-byte) floats before creating the dip image object. The variable
a now behaves somewhat differently than you might be used to. The following sections explain its
behavior.

To convert a dip image object back to a Matlab array use the function dip array. It simply returns
the data array stored inside the dip image object. The functions double, single, uint8, etc. convert
the dip image object to a Matlab array of the specified class.

There are also some commands to create an image from scratch. newim is equivalent to the zeros

function, but returns a dip image object.

a = newim(256,256);

creates an image with 256x256 pixels set to zero. An additional parameter (as in Table 4.1) can be
used to specify the data type of the new image. The default is ’sfloat’. If b is an object of type
dip image, then

a = newim(b);

creates an image of the same size (this is the same as newim(size(b))). The functions xx, yy, zz, rr
and phiphi all create an image containing the coordinates of its pixels, and can be used in formulas
that need them. For example, rr(256,256)<64 creates a binary image with a disk of radius 64. The
expression

a = (yy('corner'))*sin((xx('corner'))^2/300)

generates a nice test pattern with increasing frequency along the x-axis, and increasing amplitude

1Note that these are the names of some additional DIPlib data types not used under Matlab, the names Matlab
uses for the data types, and some generalizations of the other names.

12

DIPimage User Manual 13

Table 4.1: Valid data types for the dip image object.
Name Description Other allowed names

bin binary (in 8-bit integer) bin8, bin16, bin32

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer uint

sint8 8-bit signed integer int8

sint16 16-bit signed integer int16

sint32 32-bit signed integer int, int32

sfloat single precision float float, single

dfloat double precision float double

scomplex single precision complex

dcomplex double precision complex complex

along the y-axis. All these functions have 256x256 pixels as the default output size, and allow as a
parameter either the size of an image, or an image whose size is to be copied. For example, a*xx(a)
is an image multiplied by its x-coordinates.

4.2 Displaying dip image Objects

When a Matlab command does not end with a semicolon, the display method is called for the
resulting values, if any. This method defaults to calling the disp method, which displays all the
values in matrices. For the dip image objects, the display method has been overloaded to call dipshow
instead; dipshow displays the image in a figure window (see Section 7.2 for more information on this
function). Before display, dipshow first calls squeeze (see Sections 4.4 and 4.5), meaning that a 4x1x6
image will be displayed as if it were a 4x6 image.

The disp method shows only the image size and data type instead. If you want display to call
disp instead of dipshow, you can change the ’DisplayToFigure’ preference using dipsetpref (see
Sections 7.8 and 8.4).

For images that cannot be displayed by dipshow, (e.g. zero-dimensional and empty images, image
arrays, etc.), display always calls disp.

4.3 Operations on dip image Objects

All mathematical operations have been overloaded for the dip image object. The matrix multipli-
cation (*), which is meaningless on images, does a pixel-by-pixel multiplication, just as the array
multiplication (.*). The same applies to the other matrix operations. Relational operations return
binary images. Binary operations on non-binary images treat any non-zero value in those images as
true and zero as false. For example, to do a threshold we do not need a special function, since we have
the relational operators:

b = a > 100;

A double threshold would be (note Matlab’s operator precedence):

b = a > 50 & a < 200;

When the two images in the operation do not have the same number of dimensions, images are
expanded to match each other. This is called singleton expansion. For example, if image a is 10x12x15,

14 Chapter 4. The dip image Object

Table 4.2: Arithmetic functions defined for objects of type dip image(image in, image out).
abs acos and, & angle asin atan

atan2 besselj ceil complex conj cos

erf exp fix floor hypot imag

log log10 log2 mod not, ~ or, |

phase pow10 pow2 real round sign

sin sqrt tan xor - +

* .* ./ / ^ .^

== ~= > >= < <=

Table 4.3: Arithmetic functions defined for objects of type dip image (image in, scalar out).
all any max mean median min

percentile prod std sum var

and image b is 10x12, then image b is expanded along the third dimension by replication to compute
a+b, resulting in an image the same size as a. If image a is 10x1, and image b is 1x12, the result of
a+b is 10x12. Only dimensions of size one (and non-existing dimensions) will be expanded. If image
a is 10x12, and image b is 1x6, a+b will produce an error.

A note is required on the data types of the resulting images. The “higher” data type always determines
this result, but we have chosen never to return an integer type after any arithmetic operation. Thus,
adding two integer images will result in a 4-byte floating-point image; an 8-byte floating-point (double)
image is returned only if any of the two inputs is double. This can be changed by setting the
’KeepDataType’ option, see Section 8.4.

Many of the arithmetic functions have also been defined for objects of type dip image (see Tables 4.2
and 4.3 for a complete listing). The basic difference between these and their Matlab counterpart is
that they work on the image as a whole, instead of on a per-column basis. For example, the function
sum returns a row vector with the sum over the columns when applied to a numeric matrix, but returns
a single number when applied to an image. Besides these, there are some other functions that are only
defined for objects of type dip image. See Section 4.10 to learn about these functions. That section
also lists some functions that behave differently than usual when applied to images.

4.4 Dimensions

Matlab arrays have at least 2 dimensions. This is not true for an image in a dip image object, which
can also have 0 or 1 dimension. That is, for images there is an explicit distinction between a 2D image
of size 256 by 1 pixels, and a 1D image of size 256. Even though both images have the same number
of pixels and their Matlab array representation is identical, these two images behave differently in
many aspects. For example, size will return two numbers for the first image, but only one for the
second; similarly, it will return an empty array for a 0D image (whereas the corresponding Matlab
matrix has a size of [1,1]). Use the function ndims to obtain the number of dimensions in an image.

The 2D image in this example has a singleton dimension. A singleton dimension is any dimension of
size 1. In Matlab arrays, trailing singleton dimensions are removed if the array has more than two
dimensions. That is, an array of size 4x1x6x1 is silently converted to an array of size 4x1x6. This
never happens with dip image objects.

As in Matlab, operations between two images require that both images have the same number of

DIPimage User Manual 15

Table 4.4: Dimension manipulation functions.
cat circshift expanddim flipdim fliplr flipud

permute repmat reshape rot90 shiftdim squeeze

dimensions, as well as the same size. There is only one exception to this rule: it is possible to do
arithmetic operations between two images with different number of trailing singleton dimensions (e.g.
between two images with sizes 4x6x1 and 4x6).

Functions used in Matlab to manipulate dimensions have also been overloaded to do the same thing
with images. They are listed in Table 4.4. The function expanddim listed in this table adds trailing
singleton dimensions, and hence does not exist for Matlab arrays.

4.5 Indexing Pixels

In image processing, it is conventional to index images starting at (0,0) in the upper-right corner, and
have the first index (usually x), index into the image horizontally. Unfortunately, Matlab is based
on matrices, which are indexed starting at one, and indicating the row number first. By encapsulating
images in an object, we were allowed to redefine the indexing. We chose not to follow Matlab’s
default indexing method. This might be confusing at first, and special care must be taken to check
the class of a variable before indexing.

dip image objects are indexed from 0 to end in each dimension, the first being the horizontal. The
size function also returns the image width as the first number in the array. Any portion of a dip image

object, when extracted, is still a dip image object, and of the same dimensionality, even if it is just
a single pixel. Thus, if a is a 3D dip image object, a(0,0,0) is also a 3D dip image object, even
though it only has a single pixel. To get a pixel value as a Matlab array, use double(a(0,0,0)).
To remove these singleton dimensions use squeeze. For example, a(:,:,2) is a 3D image with a
singleton dimensions, whereas squeeze(a(:,:,2)) is a 2D image.

Any numeric type can be assigned into a dip image object, without changing the image data type
(that is, the element assigned into the image is converted to the image data type). For example,

b(:,0) = 0;

sets the top row of the image in b to 0. Note that indexing expressions can become as complicated as
you like. For example, to sub-sample the image by a factor 3, we could write

b = b(1:3:end,1:3:end);

Instead of using full indexing (indexing each dimension separately), it is also possible to index using
a single (linear) index. Following Matlab’s default behavior, the indices increase in the vertical
direction, however they start at 0 for dip image objects (i = y + x · height). The output is always a
1D image.

Finally, it is also possible to index using a mask image. Any binary image (or logical array) can be
used as mask, but it must be of the same size as the image into which is being indexed. For example,

a(m) = 0;

sets all pixels in a, where m is one, to zero. A very common expression is of the form

a(a<0) = 0;

(which sets all negative pixels to zero).

Note that the expression a(m) above returns a one-dimensional image, with all pixels selected by the

16 Chapter 4. The dip image Object

mask. It is equivalent to a(find(m)), where find returns an array of indices where m is one. This
array is then used as a linear index into a.

4.6 Image Arrays

It is possible to join objects of type dip image in an array, and the resulting array is still of type
dip image. However, an array of type dip image is treated very differently throughout the interface.
To support this idea, the functions class and isa, when querying an array of type dip image, report
that the object is of type dip image array. The function isscalar will only return true when the
object contains a single (grey-value) image.

To create an array of images use the function newimar. It has two forms: in the first form, specifying
the array dimensions creates an array of empty images; in the second form, two or more images are
joined into an image array. These two examples show both forms:

A = newimar(3); % a 3-by-1 array of empty images

B = newimar(a,b,c); % a 3-by-1 array with images a, b and c

The images in an array do not need to be of the same size or type, since the dip image array object
is just a collection of independent objects of type dip image. Accessing any of those images is possible
by indexing through the curly braces ({}). Continuing the example above,

c = B{3};

A{1} = a;

Note that indexing into the array does follow the standard Matlab array indexing rules (starting at
1, first index is row number). It is possible to combine both types of indexing, but only in a fixed
order, that is, the curly braces must come before the round braces:2

A{1}(0,0)

Most functions and operations do not work on objects of type dip image array, but the functions
imarfun and iterate allow operations to be performed on all images in an array. See Section 4.10 for
more information on these functions. The functions size, length, ndims and end behave differently
when their input is an array of images. In this case, they work on the array itself, instead of on the
images in it. Instead of using these functions, consider using imsize and imarsize. The first one
always returns the size of the image, even if it is an image array, the second one always returns the
size of the image array, even if it is a 1x1 array. length(a) can be written as max(imsize(a)), and
ndims can be written as length(imsize(a)).

Concatenation of images does not produce an image array, but a larger image. Furthermore, concate-
nation of image arrays also produces a singe image, where the image arrays are first concatenated to
form an image. For example,

d = [A];

is the same3 as

d = [A{1},A{2},A{3}];

If all the images in the array are of the same dimensionality and size, the array can be treated in a
special way. We will call such an array a tensor image.

2This is a limitation of the Matlab parser.
3Newer versions of Matlab simply ignore the brackets when there is only one value inside, so this statement does

not hold for all versions of Matlab.

DIPimage User Manual 17

Table 4.5: Arithmetic functions defined for tensor images.
cross curl det diag divergence dot

eig eig largest eye inner inv norm

outer pinv rotate svd trace -

+ .* * ./ .’ ’

4.7 Tensor Images

A tensor image is a special kind of image array, in which all images are of the same dimensionality and
size. If this is the case, istensor returns non-zero (true). For these special arrays, some arithmetic
operations are defined: +, -, *, .* and ./. They are applied to the arrays in the expected way (that
is, tensor by tensor, not image by image).

The pixels of a tensor image can be indexed like a normal image, returning a new tensor image. To
get the array at a single pixel, use the double function on it. For example, say A is a tensor image.
Then A{1} is an image with the first tensor component as pixel values, A(0,0) is a tensor image with
a single pixel, and double(A(0,0)) is a Matlab array with the tensor values at the first pixel. This
indexing is not allowed on image arrays that are not tensors.

Note that the functions size, length, ndims and end make no exception for tensor images, and work
on the array itself, not on the images in it. Thus, as mentioned in Section 4.6, use the function imsize

to obtain the size in pixels of a tensor image, and imarsize to obtain the size of the tensor at each
pixel.

Also note that a scalar image (with one component) is also a tensor image (istensor returns true).
The function isscalar returns true when there is only one tensor component. Additionally, the
function isvector returns true if the tensor image has more than one component and these are all
along one dimension. Relevant similar functions are iscolumn, isrow and ismatrix.

Functions defined specifically for tensor images are summarized in Table 4.5. See Section 4.10.

4.8 Color Images

A color image is represented in a dip image object by a tensor image with some extra information on
the color space in which the pixel values are to be interpreted. A color image must have more than
one channel, so the tensor image that represents it should have at least two components. Use the
colorspace function (see Section 4.10) to add this color space information to a tensor image:

C = colorspace(A,'RGB')

A color space is any string recognized by the system. Currently defined color spaces are RGB, R’G’B’,
XYZ, Yxy, L*a*b*, L*u*v*, CMY, CMYK, HCV and HSV. It is possible to specify any other string
as color space, but no conversion of pixel values can be made, since the system wouldn’t know how.
Images with a color space will be displayed by dipshow. If the color space is recognized it will be
converted to RGB for display.

To convert an image from one color space to another, use the colorspace function. Converting to a
color-space-less tensor image is done by specifying the empty string as a color space. This action only
changes the color space information, and does not change any pixel values. Thus, to change from one
color space to another without converting the pixel values themselves, change first to a color-space-less
tensor image, and then to the final color space.

The function joinchannels combines two or more images into a color image using the specified color

18 Chapter 4. The dip image Object

space:

C = joinchannels('RGB',a,b,c)

All operations that are defined for tensor images can be applied to color images. In case a dyadic
operation is applied to two color images with different color spaces, no conversion is done. Instead, the
color space information is thrown away and both images are treated as tensor images. An operation
between a color image and a tensor image produces a color image.

4.9 A Note on the end Method in Indexing

Because of limitations in the Matlab language, it is impossible to know, for the overloaded end

method, if it is being used inside curly or round braces (i.e. whether the last element of the image
array is requested, or the last pixel of the image is requested). The solution we have adopted is to
suppose image array indexing if the object being indexed is an array, or pixel indexing otherwise
(following the convention used for size, length and ndims). Thus, end only works fine inside curly
braces if there is more than one image in the object, and it only works fine inside round braces if there
is just one image in the object.

Since this is not an optimal solution, we suggest that you use end with care. end can be substituted
with imsize or imarsize in all cases. These two

a{end}, b(end,end)

are equivalent to

a{prod(imarsize(a))}, b(imsize(b,1)-1,imsize(b,2)-1)

4.10 Special Functions

There are some special functions defined only for dip image objects. Many have already been men-
tioned in preceding sections, but we will summarize them here. We also list some functions that are
very different in usage from their Matlab equivalent.

cat

cat concatenates images into a larger image, just as the regular cat does with arrays. The difference
is that it concatenates any image array inputs into a scalar image before joining its inputs. Thus, it
always produces a scalar image (see Section 4.6).

class

Even though the object is of type dip image, class will return dip image array if there is more than
one image in the object. See Section 4.6.

colorspace

This function will add and retrieve color space information from a tensor image with two or more
components. It can also be used to change the color space of a color image, in which case the pixel
values will be recomputed. See Section 4.8 for more information on color spaces.

convhull

This overloaded function works differently from the Matlab one. The output is a binary image
containing the solid convex hull of the binary image input. convhull(a,’no’) returns only the outer

DIPimage User Manual 19

shell, (i.e. the volume is not filled in).

curl, divergence

curl calculates the rotation of a 2D or 3D vector image. divergence computes the divergence of a
vector image. Both methods have different input arguments from their base counterparts.

datatype

datatype extracts the data-type string from a dip image object. If the input is an image array, it
expects as many output parameters as images are in the array. The string returned is a DIPlib data
type name, not a Matlab class name (i.e. ’sfloat’, not ’single’); see Table 4.1. To change the
data type of an image, use the function dip image.

dip array

dip array extracts the data array from a dip image object. If the input is an image array, it expects
as many output parameters as images are in the array, and puts one array into each. Alternatively,
if only one output parameter is given, and the input is a tensor image, the tensor components are
catenated along a new dimension before the data array is extracted. The data array is returned as-is
unless a second input argument is used to specify a data type.

double, single

These functions convert a scalar image (in an object of type dip image) to a Matlab array of type
double (Matlab’s default data type) or type single (single precision floating point). They are
equivalent to calling dip array with ’double’ or ’single’ as a second argument.

Also defined are uint8, uint16, uint32, int8, int16, int32 and logical.

eig

As opposed to the builtin eig function, this version only works on 2x2 or 3x3 symmetric tensor images,
such as the structure tensor, the Hessian, etc.

eig largest

This function computes the largest eigenvector for a square tensor image using the Power method. An
optional second output argument contains the corresponding eigenvalue.

The second argument in the call

v = eig_largest(a,sigma)

specifies the tensor smoothing that should be applied before calculating the eigenvector.

expanddim

expanddim(a,n) increases the dimensionality of the image a to n, by appending dimensions of size 1.

find, findcoord

find works similarily to the base version, except it is not possible to obtain [I,J] indices as output.
The indices returned are always linear indices. An optional second output argument receives the
non-zero values. To obtain the coordinates of non-zero values, use findcoord instead. It returns the
coordinates of the pixels with non-zero values as a single array, with as many columns as dimensions in
the input image, and one row for every non-zero pixel. Note that this matrix cannot be used directly

20 Chapter 4. The dip image Object

Table 4.6: Options for imarfun in its first form. These operations compute a single value for each
image in the array.

Option Meaning

’isempty’ true for empty image

’islogical’ true for binary image

’isreal’ true for non-complex image

’ndims’ number of dimensions of image

’prodofsize’ number of pixels in image

’max’ maximum pixel value in image

’mean’ mean pixel value in image

’median’ median pixel value in image

’min’ minimum pixel value in image

’std’ standard deviation of pixels in image

’sum’ sum of pixels in image

to index an image.

gradient

The overloaded version of gradient returns a vector image, instead of multiple outputs. The deriva-
tives are computed using Gaussian derivatives.

imarfun

imarfun applies some other function on an array of images. It has two modes.

In the first mode, it produces a numeric array with the same size as the input image array, where
each number is some measure for each image. The possibilities are listed in Table 4.6. This example
replaces the image a for the empty images in the array A:

I = imarfun('isempty',A);

A{find(I)} = a;

The second mode applies an operation to all images in the array, which must all be of the same size
(istensor returns true), producing an image with the same size as the images in the array. The
possibilities are listed in Table 4.7. For example, to get the sum of all images in the array A, we can
do either of these:
res = imarfun('imsum',A);

res = A{1}+A{2}+A{3}+...+A{end};

imarsize, imsize, size

The function size works differently if the input is of type dip image or dip image array. To solve
the problems that yields, use the functions imsize to obtain the size of an image (including tensor
images or color images), and imarsize to obtain the size of an image array, even if the image is scalar.

imarsize, just like the function size when applied to an array, always returns at least two values.
imsize, on the other hand, can return fewer values.

ind2sub, sub2ind

These functions have the same function as their base counterparts, but instead of using subscripts
specified with one array for each dimension, they take and return a single coordinate array, compatible

DIPimage User Manual 21

Table 4.7: Options for imarfun in its second form. These operations combine all images into a new
image.

Option Meaning

’imsum’ sum of all images

’improd’ product of all images

’imor’ true if any pixel is non-zero

’imand’ true if all pixels are non-zero

’immax’ maximum pixels over all images

’immin’ minimum pixels over all images

’imeq’ true if pixel is equal in all images

’imlargest’ index of first image with largest pixel value

’imsmallest’ index of first image with smallest pixel value

to that returned by findcoord. Also, instead of a size array, they take an image as input.

inner, outer

These calculate the inner and outer product of two tensor images. outer is only defined for tensors
with three components. They are equivalent to dot and cross, respectively.

isa

isa(a,’dip image’) returns true only if there’s a single image in the object a.
isa(a,’dip image array’) returns true only if there’s multiple images in the object.
isa(a,class(a)) always returns true. See Section 4.6.

iscolor

iscolor returns true if the input image is a tensor image and contains color space information (see
Section 4.8).

isscalar

isscalar returns true if the argument is a dip image, not a dip image array. That is, the argument
is a single, scalar, grey-value image.

istensor

istensor returns true if all images in an image array are of the same size. A tensor image is treated
differently than a regular image array (see Section 4.7). Note that a scalar image is also a tensor
image.

Also defined are iscolumn, ismatrix, isrow and isvector. These give additional information about
the shape of the tensor.

iterate

iterate loops through each image in the image arrays it gets as input, and calls the function fun with
the given parameters. This is a very versatile function, and allows a combination of image arrays,
single images and other objects as input. The only requirement is that all the image arrays are of the
same size.

22 Chapter 4. The dip image Object

For example, let A and B be N-by-M dip image array objects. Then

C = iterate('max',A,B);

is the same as
C = newimar(N,M);

for ii=1:N*M, C{ii} = max(A{ii},B{ii}); end

Use the function iterate to apply filters to color images.

length, ndims

The functions length and ndims, much like size, work differently on scalar images and on tensor
or color images. If the image is scalar, they work on the image itself, meaning that ndims returns
the dimensionality of the image and length returns the maximum size of the image. However, if the
input is a tensor or a color image, which are implemented as image arrays, these functions work on
the array rather than the image. So now ndims returns the dimensionality of the tensor (or just 2 for
normal color images), and length returns the maximum tensor size (or the number of channels in the
color image).

max, min

These functions have two different forms.

In the first form, they return the global maximum/minimum in the image and, optionally, its position:

[value,pos] = max(a,m);

The second input argument is a mask image, for ROI processing (this must be a binary image or
logical array). It is also possible to process only a specified set of dimensions. For example, assuming
a is 3D, this command returns a 3D image with two singleton dimensions, where each pixel i contains
the maximum over a(i,:,:):

value = max(a,m,[2,3]);

If no mask is required, pass [] for the mask argument. A second output argument gives the location
of the maximum, but only can be given if the projection is along one dimension:

[value,pos] = max(a,m,1);

Here, a(pos(0,i,j),i,j) == value(0,i,j).

The second form takes two images and returns an image with the supremum of the two:

c = max(a,b);

mean, std, var

These return the mean intensity, standard deviation or variance of the pixel values in an image. It is
possible to add a mask:

value = mean(a,m);

As in max, it is possible to specify a set of dimensions that are to be processed:

value = mean(a,m,[2,3]);

If no mask is required, pass [] for the mask argument.

median, percentile

DIPimage User Manual 23

percentile returns the p percentile of all pixels in the image a, and, optionally, its position:

[value,pos] = percentile(a,p);

Note that percentile(b,50) is exactly the same as median(b), percentile(b,0) is a silly way of
computing min(b), and percentile(b,100) is a silly way of performing max(b).

Like max and min, these two function also allow specifying a set of dimensions that are to be processed,
and a mask image m for ROI processing:

[value,pos] = median (a,m,[2,3]);

[value,pos] = percentile (a,p,m,[2,3]);

numel

The function numel always returns 1. To obtain the number of pixels in an image, use
prod(imsize(a)). To obtain the number of tensor elements, or the number of images in an im-
age array, use prod(imarsize(a)).

phase

phase is defined the same as angle, and is provided because it might be easier to remember for some
users. It returns the angle of the complex values in an image.

pow10

This function was added just to complete Matlab’s collection of pow2, log2, and log10.

prod, sum

These methods return the product or sum of all pixel values in an image. Arguments are identical to
mean and the like.

rot90

This function works on images of any dimensionality, not only 2D images. However, the rotations
always occur in the x-y plane.

rotate

The overloaded method rotate has nothing to with Matlab’s rotate. Applied to a 3D-vector image,
it rotates the vectors around an axis given by a second vector image or vector.

4.11 Review of the Differences Between a dip image and a Matlab Array

As we have seen, objects of type dip image have some differences with respect of regular Matlab
arrays. The main difference is in indexing. We start counting pixels from 0, and the first index counts
from left to right. This ordering is also used by functions such as size, in which the first number is
the image width and the second one the height. Finally, ndims can return 0 or 1, which it never does
for Matlab arrays, and size can return an empty array or a scalar, which it never does for Matlab
arrays. The reason is that zero-dimensional and one-dimensional images are allowed, and are not seen
as a special case of two-dimensional images. Furthermore, singleton dimensions at the end are not
ignored.

When a Matlab command results in an object of type dip image, and it is not ended with a semicolon,
the image is displayed to a figure window, instead of having its pixel values shown in the command

24 Chapter 4. The dip image Object

window. This is the default behavior, but can be overridden.

There are no array operators for scalar images, all operators work on a pixel-by-pixel basis. All
functions that work on the columns of numeric arrays work on the image as a whole when applied to
a dip image object.

A collection of images can be stored in an object of type dip image. For the purposes of the toolbox,
such an object is called a dip image array. Syntax for indexing into such a collection is similar to
that used to index into a cell array (which is a collection of any type of arrays), but should not be
confused for one. A special type of image array is used as a tensor image, for which a whole range of
functions is available. Color images are tensor images with color space information.

Objects of type dip image cannot be used in functions of the MathWorks’ Image Processing Toolbox.
Although most of Matlab’s functions work on dip image objects, not every function will work as
expected. Use the functions dip array, double or uint8 to convert the image to a format recognizable
by these functions.

Chapter 5

The dip measurement Object

The function measure (and the low-level dip measure function in DIPlib) returns the measurement
results in an object of type dip measurement. It contains all the measures done on an image in a
manageable way.

5.1 Extracting Measurement Data

The data in the dip measurement object can be accessed in a very simple way, but only for reading,
not writing (i.e. data manipulation is not allowed).

Indexing with parentheses is used to access the measurements belonging to one or more objects. The
index used must match the label ID of the object in the image, and the returned value is an object of
type dip measurement.

The dot operator is used to extract the values corresponding to a single measurement. The array
returned is of type double.

For example,

msr(11:15).size

will return a double array with five elements, being the sizes for objects number 11 through 15. Note
that element 11 doesn’t need to be placed 11th in the list of measurements. If only objects starting
at 10 were measured, the above example is equivalent to

msr.size(2:6)

since msr.size returns a double array, whose second element would be the size of object number 11.

The end method will return the last label ID in the object. double converts the data in the object to
a double array, loosing the names of the measurements and the label IDs.

5.2 Other Information on the dip measurement Object

Besides extracting the measured data, you might want to gain more knowledge on the object you are
dealing with (e.g. which measurements were taken and how many of them are there). This section
describes functions used for this purpose.

fieldnames returns the names of the measurements present in the object.

isempty returns true if there is no data in the object.

size returns the number of IDs as the first dimension, and the number of measurements as the second.
Note that the number of measurements returned by size does not need to be equal to the number of
names returned by fieldnames. If a measurement contains more than one value for each object, each
of these is taken as a measurement. Thus, the number of measurements is the number of scalar values
assigned to each object. size(double(msr)) returns the same value as size(msr).

25

26 Chapter 5. The dip measurement Object

5.3 Combining Measurement Data

To join measurements produced by different calls to measure, use the default Matlab syntax. How-
ever, there is the limitation that, when joining measurements, they must contain either the same
measurements on different objects, or different measurements on the same objects. Horizontal and
vertical catenations produce different effects.

[A,B] joins two measurement objects with the same label IDs, but different measurements. If some
measurements are repeated, or if the label IDs don’t match, an error is generated.

[A;B] joins two measurement objects with the same measurements, on different label IDs. If some
IDs are repeated, or if the measurements don’t match, an error is generated.

In some cases, objects in different images have the same labels. These need to be changed before
catenation is possible. This is done by the following syntax:

msr.id = 51:73;

The length of the array assigned to the IDs must have the same number of elements as the measurement
object.

Similarly, it is possible to measure the same thing on different images of the same objects. For
example, one might measure the average grey value on all three channels of an RGB image. To join
these measurements into a single object, it is possible to add a prefix to the names of the measurements:

msr1.prefix = 'red_';

msr2.prefix = 'green_';

msr3.prefix = 'blue_';

msr = [msr1,msr2,msr3];

Note that this prefix cannot be changed, only added to. For example,

msr.prefix = 'A';

msr.prefix = 'B';

causes the measurements in msr to have names like ’BAsize’.

5.4 Adding Measurement Data

Furthermore, it is possible to add your own measurements to a dip measurement object:

msr.temperature = mydata;

You can name them whatever you want, except id or prefix, since that would invoke the syntaxes
explained previously. The array mydata in the example above has to be an array with the same
number of columns as there are labels in the dip measurement object.

The function rmfield deletes a measurement from the object.

5.5 Converting a dip measurement Object to a dataset Object

The dip measurement object provides an overloaded version of the dataset function, which will
convert the measurement object into a PRTOOLS data set. An optional second argument allows
giving each object a class ID:

ds = dataset(msr,[1,1,1,2,2,3,2,3,3,2,1])

For more information on the PRTOOLS pattern recognition toolbox, go to
http://www.prtools.org/.

http://www.prtools.org/

DIPimage User Manual 27

5.6 Creating a dip measurement Object with Your Own Data

To create an object of type dip measurement, use the dip measurement function. Its syntax is:

msr = dip_measurement(id,'msrname1',msr1,'msrname2',msr2,...)

where id is a vector containing the object IDs, and ’msrname1’ and msr1 are the name and results
of a measurement. The number of columns in msr1 should match the number of elements in id, as
each of the columns represents the result of a measurement on a single object.

If the name of a measurement is not given, ’dataX’ is assumed, where the ‘X’ is the ordinal number
of the measurement. If id is not given, 1:N is assumed. Note that the only way it is possible to
recognize whether id is missing is if the first argument is a string.

5.7 Backwards Compatibility

The dip measurement object is new to version 1.1 of the toolbox. However, it has been implemented
in such a way that most old code doesn’t break. The structure that used to be returned by measure
in earlier versions can still be obtained with the struct function:

oldmsr = struct(msr);

The dip measurement constructor can be used to convert this structure back to an object. Converting
to a structure is the only way of manipulating the measurement data.

Chapter 6

Figure Windows

The display is a very important part of any image-processing package. dip image objects containing
scalar or color images with 1 to 4 dimensions are displayed to Matlab’s figure windows. These
windows are completely cleared beforehand, meaning that images never share a window with each
other or with other graphical elements. This chapter describes the possible interactions with figure
windows, how to link variables with them, and their placing on the desktop.

6.1 The Figure Window Menus

The display for an image contains four menus: “File”, “Sizes”, “Mappings” and “Actions”.

The first menu contains a “Save display...” option that saves the display to a TIFF file. This allows
you, for example, to save an image with labels, or to zoom into a portion of an image and only save
that. It also contains a “Close” and a “Clear” item. On Windows machines, there is a “Copy display”
option. It does the same as “Save”, but writes the image as a bitmap to the clipboard, so that it can
be pasted into other applications.

“Sizes” contains options that call diptruesize, which causes the image to be displayed with an aspect
ratio of 1, and various different zoom factors (see Section 7.4). It also contains an option that causes
a the image to be stretched to fill the figure window. The last option on this menu, “Default window
size” resizes the window to some pre-defined size (which is 256 by 256 pixels, but you can change it
using dipsetpref, see Sections 7.8 and 8.4).

“Mappings” contains different ways of mapping the data for display. These options correspond to calls
to dipmapping (see Section 7.3). The first section here contains stretching modes, which correspond to
the range parameter in dipshow (see Section 7.2); one of these options is “Manual...”, which, through
a dialog box, allows the user to select a custom range. The second section, only available for grey-value
images, selects a colormap. The options in the first section will sometimes change the selection of the
colormap. If the image being displayed is complex, this menu allows choosing the complex to real
mapping performed (magnitude, phase, real or imaginary part). For 3D and 4D images you can select
the orientation of the slices shown (X-Y, X-Z, Y-Z, X-T, Y-T, Z-T), as well as decide whether the
stretching mode selected is to be computed on the whole volume (“Global stretch”) or only on the
current slice.

The “Actions” menu selects the actions that can be performed through the mouse. The options
“none”, “Pixel testing”, “Zoom”, “Looking glass” and “Pan” (which correspond to the diptest,
dipzoom, diplooking and dippan commands) are available to all image types. The 3D/4D image
display also contains an option to “Step through slices” (dipstep), and the 2D grey-value image
display contains an option for “Orientation testing” (diporien). See Section 6.2 for more information
on these modes, and Section 7.5 for the associated commands. This menu also contains a command
to enable or disable the keyboard functionality in the window. See Section 6.3 for more information
on this.

Finally, the “Actions” menu on 3D/4D images contains some more options:

28

DIPimage User Manual 29

• “Link displays” (diplink, see Section 7.6) allows the user to link a display with other displays.
When stepping through the slices of this image, or changing the orientation of the slicing, the
images in the other displays will be kept in sync. This can be used to easily compare various 3D
or 4D images.

• “Animate” (dipanimate) will step through all slices in sequence. Calling this function from the
command line allows the user to choose the speed of this animation.

• “Max projection” and “Sum projection” (dipprojection) open a new window with the chosen
type of projection, along the current visualization axis.

• “Isosurface plot” (dipisosurface) also opens a new window, showing an isosurface plot of the
image. This window contains some controls to modify the surface. You should be aware that
it takes a while to generate an isosurface. It is recommended to smooth and down-sample an
image before generating an isosurface plot. The isosurface plot is only available for 3D displays.

6.2 Using the Mouse in Figure Windows

As discussed above, the “Actions” menu allows selecting a mode for the mouse to work in. Depending
on the dimensionality and type of the image, the modes are (the commands between brackets can also
be used to turn these modes on and off, see Section 7.5):

• “None”: The mouse does nothing.

• “Pixel testing” (diptest): The mouse is used to examine pixel values and location.

• “Orientation testing” (diporien): The mouse is used to examine local orientation.

• “Zoom” (dipzoom): The mouse is used to zoom the image in and out.

• “Looking glass” (diplooking): The mouse is used to enlarge a part of the image.

• “Pan” (dippan): The mouse is used to pan the image if it doesn’t fit in the window.

• “Step through slices” (dipstep): The mouse is used to step through the slices of a 3D or 4D
volume.

When diptest is turned on, depressing the left mouse button will cause the current cursor position to
be displayed in the title bar, together with the grey-value (or color values) of the pixel at that location.
It is possible to move the mouse while holding down the button. Depressing the right mouse button
does the same thing, but the cursor position becomes the origin of the coordinate system. This mode
allows for length measurements in images.

When diporien is first turned on, a dialog box asks for the orientation image to associate to the
currently displayed image. This dialog can also calculate that image for you, using the function
structuretensor. Depressing any mouse button over the image now converts the cursor into a
line, aligned with the local image orientation. Like in diptest, the title bar changes to display the
coordinates and local orientation. The only way of changing the orientation image associated with
this display is to set “Actions” to “None”, and then enable diporien again. Displaying a new image
in this display also removes the orientation image.

When dipzoom is turned on, the mouse can be used to zoom the image in and out:

• Clicking with the left mouse button zooms the image in (with a factor 2).

• Clicking with the right one will zoom the image out (with a factor 2).

• Double-clicking any mouse button will cause the image to be stretched to fill the figure window.

• Dragging a rectangle around an area of interest will cause it to be zoomed-in on.

30 Chapter 6. Figure Windows

The aspect ratio is set to 1:1 when zooming in or out, except after double-clicking. See Section 6.3 to
learn how to zoom using the keyboard.

dippan enables the user to use the mouse to pan (move) the image if it is larger than the window.
Just press the left mouse button and move the mouse with the button down. It is also possible to pan
using the keyboard (see Section 6.3).

When dipstep is selected, it allows the user to click or drag the cursor over the image to go back
and fourth through the slices that make up the volume. Moving the mouse down or to the right,
while holding down the left button, displays higher slice numbers along the first hidden dimension.
Moving the mouse up or to the left displays lower slice numbers. Alternatively, click with the left
mouse button to go up, and with the right one to go down. If the displayed image is 4D, dragging the
mouse with the right button down moves the display along the second hidden dimension. Section 6.3
explains how to do step through slices with the keyboard.

6.3 Using the Keyboard in Figure Windows

When the keyboard is enabled for a display window, it can be used to step through the slices of a
3D/4D image, zoom in and out, and pan the image. These functions are independent of the chosen
mode for the mouse under the “Actions” menu.

The keys N and P step to the next and previous slice, respectively, of a 3D image. Additionally, you
can type the number of a slice and press Enter to go to it. Note that slice numbers start with 0.
In case of a 4D image, N and P step through the first hidden dimension (Z), whereas F and B step
through the second hidden dimension (T).

The keys I and O are used to zoom in and out, respectively. The zoom factor is 2. When zoomed in,
use the following keys to pan the image and get to the area of interest: W for up, S for down, A for
left, and D for right. With Matlab 6 and newer, it is also possible to use the arrow keys.

The Esc key disables the keyboard. This is useful under Windows, where displaying an image causes
its window to gain keyboard focus. You would have to click on the command window to continue
typing a new command. Instead, press Esc, which disables the keyboard for the window and causes
your keystrokes to be send to the command window. To enable the keyboard again, use the menu
item “Enable keyboard” under the “Actions” menu. With the command

dipsetpref('EnableKeyboard','off')

you disable the keyboard by default, and will have to use the above mentioned menu item to enable
it. See Sections 7.8 and 8.4.

6.4 Linking Variables with Figure Windows

A variable name can be linked with the handle of a figure window, such that any image stored in
that variable will always be displayed in the same window. This is done through the dipfig function
(see Section 7.7). It is not possible to link a single variable with more than one figure window, but it
is possible to link many variables to the same figure window. This system allows the user to create
a series of figure windows that will be reused, instead of having new windows created all the time.
These links do not, however, promise that an image displayed is actually up-to-date. Changing the
contents of a variable does not change the contents of a figure window. By not adding the semicolon
at the end of commands, it is possible to automatically update the figure windows (see Section 4.2).

A special name ’other’ is defined in dipfig, that is a substitute for all variables not explicitly linked
to a figure window. It allows the user to have a window for all possible images he can create. ’other’

DIPimage User Manual 31

can be linked to a series of windows, which then will be used sequentially.

Closing a window does not destroy the links that were made for it. Since variable names are linked to
window handles, a window can be reopened to display the image with which it is linked.

Note that many toolbox functions that require a figure window handle as input also accept a variable
name. Variable names linked with a figure window are considered aliases for a figure window handle.

6.5 Setting the Position of Figure Windows

The position of a figure window can be changed by manipulating its ’Position’ property, which is
defined by an array with four values: left, bottom, width and height.

set(handle,'Position',[left,bottom,width,heigth]);

The coordinates for figure windows start at the bottom-left corner of the screen, and are in screen
pixels by default. This can be changed to centimeters, inches and other units:

set(handle,'Units','points');

See “Matlab Function Reference” for more information on figure window properties.

The dipfig function has an additional optional parameter, which can be used to set the position of a
figure window at the same time that it is created. This parameter comes at the end of the parameter
list, and is the same array used for the ’Position’ property:

dipfig('a',[400,600,256,256]);

The width and height values are those of the image that will fit in the window, and the window itself
is drawn around this area. These values are always in screen pixels.

If an image is larger or smaller than the size of the window, the window will be resized so that the
image fits exactly. That is, unless the ’TrueSize’ option is turned off (see Section 8.4), in which case
the window will not be resized, and the image will be stretched to fit. To have your windows fixed on
the desktop, disable the ’TrueSize’ option.

As with all other settings, the position of the figure windows cannot be saved from one session to the
next. Add the appropriate commands to your startup.m or dipinit.m files to have the same settings
across sessions (see Section 8.3).

Chapter 7

Toolbox Functions

7.1 The GUI: dipimage

The GUI is started with the dipimage command. It contains menus with all available image-processing
functions in the toolbox. After choosing any of these menu items, the GUI window transforms itself into
a dialog box so that you can enter the appropriate parameters. The controls that allow entering images
have a context-menu (obtained by right-clicking in them) with the names of the images currently
defined. It is possible to enter the name of a variable containing an image or any valid Matlab
statement that evaluates to image data. (The same is true for other objects, like measurements or
data-sets. Also, the window selection control, which is a drop-down list, can be updated through its
context-menu.) Pressing the “Execute” button causes the function to be called. There is also a button
to get help on the particular function. The whole process is rather obvious and self-explanatory, and
no further words shall be wasted on it.

In the “File I/O” menu is an option “Record macro”. When selected, the user is asked for the
name under which the macro will be recorded. The extension will be “.m”, indicating it is an M-file.
Matlab scripts are M-files, and can be executed by typing their name on the command line. After
entering the name (let’s assume we use the default “macro.m”), this file will be created (or appended
to if it already exists1), and loaded in the editor. Any commands executed through the DIPimage GUI
will be written to this file, in the same manner as that they are echoed to the command line. When
finished, select the same menu item again (its text will have changed to “Stop recording macro”).
Typing the macro name on the command line:

macro

will execute all recorded commands again. It is possible to append commands to a recorded macro by
starting the recording again with the same macro name. It is also possible to edit the macro in the
editor. However, if you edit the macro file while recording, do remember to save your changes before
executing another command through the GUI.

7.2 The dipshow Function

dipshow shows a dip image object, as an image, in a figure window (that is, as long as it is a binary,
grey-value or color image, and has between 1 and 4 dimensions). An optional second argument
indicates the display range required, and allows more flexibility than the options in the “Display”
menu. The general form for dipshow is:

dipshow(a,range,colmap)

where range is either a grey-value range that should be displayed, or one of ’log’ or ’base’.
A range is a numeric array with two values: a lower and an upper limit. The pixels with
the same or a lower value than the lower limit will be mapped to black. The pixels that

1Matlab will ask if it is OK to overwrite the file, don’t worry, the file will not be overwritten but appended to.

32

DIPimage User Manual 33

are equal or larger than the upper limit will be mapped to white. All other values are lin-
early spaced in between. The strings ’lin’ and ’all’ and the empty array are a shortcut for
[min(image),max(image)], and cause the image to be stretched linearly. The string ’percentile’

is a shortcut for [percentile(image,5) percentile(image,95)], and ’angle’ and ’orientation’

are equivalent to [-pi,pi] and [-pi,pi]/2 respectively. The default range is [0,255], which is used
unless a range is given explicitly. colmap is a colormap. It can either be ’grey’, ’periodic’,
’labels’ or an array with 3 columns such as those returned by the Matlab functions hsv, cool,
summer, etc. (see the help on colormap for more information on this).

The strings ’angle’ and ’orientation’ imply ’periodic’ if no explicit colormap is given. This
colormap maps both the maximum and minimum value to the same color, so as to hide a jump in
angle or orientation fields. The string ’labels’ implies a range of [0,255], and produces a colormap
that gives each integer value a distinct color.

The string ’log’ causes the image to be stretched logarithmically. ’base’ is a linear stretch that
fixes the value 0 to a 50% grey value.

Examples:

dipshow(a,'lin',summer(256))

dipshow(a,[0,180],'periodic')

If the input argument is a color image, it will be converted to RGB for display.

The image is displayed in a figure window according to the name of the variable that contains the
image. Links can be made using the dipfig function (see Section 7.7). If the variable name is not
registered, a new figure window is opened for the image. To overrule this behavior, it is possible to
specify a figure handle in the parameter list of dipshow:

dipshow(handle,image,'lin')

Finally, an optional argument allows you to overrule the default setting for the ’TrueSize’ option.
By adding the string ’truesize’ at the end of the parameter list for dipshow, you can make sure
that diptruesize is actually called. The string ’notruesize’ does the reverse.

See Chapter 6 for more information on the figure windows used by dipshow.

7.3 Figure Window Support: dipmapping

The function dipmapping can be used to change the image-to-display mapping. All menu items under
the “Mappings” menu are equivalent to a call to dipmapping. In a single command, you can combine
one setting for each of the four categories: range, colormap, complex-to-real mapping, the slicing
direction and the global stretching for 3D images.

dipmapping(h,range,colmap,torealstr,slicingstr,globalstr)

changes the mapping settings for the image in the figure window with handle h. It is not nec-
essary to provide all four values, and their order is irrelevant. range can be any value as de-
scribed for dipshow in Section 7.2: a two-value numeric array or a string. colmap can contain
any of the strings described for dipshow, but not a colormap. To specify a custom colormap, use
dipmapping(h,’colormap’,summer(256)). torealstr can be one of: ’abs’, ’real’, ’imag’ or
’phase’. slicingstr can be one of: ’xy’, ’xz’, ’yz’, ’xt’, ’yt’ or ’zt’. globalstr can be one
of ’global’ or ’nonglobal’. If you don’t specify a figure handle, the current figure will be used.

Additionally, you can specify a slice number. This is accomplished by adding two parameters: the
string ’slice’, and the slice number. These must be together and in that order, but otherwise can
be combined in any way with any of the other parameters. The same is true for the ’colormap’

34 Chapter 7. Toolbox Functions

parameter.

7.4 Figure Window Support: diptruesize

The “Sizes” menu contains some options to call diptruesize (see Section 6.1). This function causes
an image to be displayed with an aspect ratio of 1:1, each pixel occupying one screen pixel. An
argument gives the zoom factor. For example, 200 would make the image twice as large on the screen,
but with the 1-to-1 aspect ratio:

diptruesize(200)

diptruesize(’off’) causes the image to fill the figure window, possibly loosing the aspect ratio.
diptruesize accepts a figure handle as an optional first argument. If you provide a handle, you must
also provide a zoom factor.

7.5 Figure Window Support: diptest, dipzoom, et al.

As explained in Section 6.1, the first section of items under the “Actions” menu correspond to the
diptest, diporien, dipzoom, diplooking, dippan and dipstep commands. We explain here how to
use the functions. The modes they activate are described in the section previously referred to.

All five functions have the same syntax:

diptest on

enables the mode, and

diptest off

turns it off. diptest, by itself, toggles the state. The current window is the last one activated. You
can select a window either through some mouse action on that window, or by typing in the Matlab
command window:

figure(handle)

where handle is the handle of the figure window, which should be visible on the title bar. If you know
this handle, you can also directly use it as a parameter to diptest:

diptest(handle)

or

diptest(handle,'on')

7.6 Figure Window Support: diplink

diplink is the command that corresponds to the “Link displays...” menu option for 3D/4D images
(see Section 6.1). It is used in much the same way as the functions in Section 7.5. When turning on,
it displays a dialog box that allows the user to select the windows with which to link. Alternatively,
it is possible to specify the figure windows with which to link through the command line:

diplink('a',{'b','c','d'})

or

diplink(1,[2,10,6])

DIPimage User Manual 35

7.7 Creating, Linking and Clearing Figure Windows: dipfig and dipclf

The single most important thing that can be customized in the DIPimage environment is the way that
images are displayed to figure windows. It is possible to link a variable name with a figure handle,
such that that variable is always displayed in that same window. If a variable is not linked to any
window, a new one will be opened to display it. The command

dipfig a

opens a new figure window and links it to the variable named a. Whenever that variable (if it contains
an image) is displayed, it will be send to that window. If the window is closed, it will be opened again
to display the variable. It is possible to link more than one variable to the same window, like in the
next example (which uses the functional form):

h = dipfig('a')

dipfig(h,'b')

Finally, there is a special variable name, ’other’, that creates a link for all variables not explicitly
linked to a window. It is possible to have many windows linked to this special name, and they will be
used alternately. Creating a window for ’other’ avoids the opening of new windows for ‘unregistered’
variables.

To remove the links, type

dipfig -unlink

Unlinking only a specific variable is not implemented.

To clear all figure windows (for example at the beginning of a demo), use the function dipclf. It
doesn’t change the position or size of any window, but removes the images in them. dipclf can also
be used to clear selected windows by giving it an array with handles or a cell array with names as
an argument (in a cell array you can actually combine numeric handles and variable names).

7.8 Toolbox Preferences: dipsetpref and dipgetpref

All toolbox preferences are stored in memory, and are only accessible through the dipsetpref and
dipgetpref functions. They are listed in Section 8.4.

v = dipgetpref('name');

retrieves the value of the named preference. Two special forms print all current preferences and all
factory settings to the command window:

dipgetpref

dipgetpref factory

Setting a preference is similar:

dipsetpref('name',value)

Furthermore, it is possible to set many preferences at once:

dipsetpref('name1',value1,'name2',value2,'name3',value3,...)

7.9 Interactive Tools: dipcrop, dipgetcoords, et al.

These are some tools that, using an image display, allow the user to select points or regions in an
image. dipgetcoords returns the coordinates of one or more points selected by clicking on an image.
dipcrop returns a rectangular portion of an image selected by dragging a rectangle. dipprofile

36 Chapter 7. Toolbox Functions

returns a 1D image interpolated along a path selected by the user on the display. diproi returns a
mask image (ROI stands for region of interest) created by selecting the vertices of a polygon; it can
only be used with 2D images.

dipgetimage retrieves the image from a display. Use it if you lost an image but can still see it in its
display.

dipstackinspect lets the user click on a 3D display, and shows a 1D plot of the hidden dimension at
that point. The tool will stay active until the right mouse button is clicked over the image.

7.10 Other 3D Visualization Tools: dipanimate, dipisosurface,
dipprojection

These functions handle the callback for some visualization tools available on 3D or 4D displays.
dipanimate automatically steps through slices. Optional input arguments allow to set the speed and
whether to loop indefinitely or not. dipisosurface shows a 3D rendering of an isosurface of a 3D
image. dipprojection calculates and displays various types of projections.

7.11 Image Processing Functions

The largest part of the toolbox is made out of the image processing functions. Most of them are listed
in the menu system of the GUI, and all are listed by typing

help dipimage

The usage of each function can be retrieved through the help command or through the GUI.

7.12 Adding Functions to the GUI

To add a function to the GUI, it must:

• respond in certain ways to certain inputs, so that the GUI can query it for parameters, and

• be on both the Matlab path and the DIPimage path.

The second requirement is the easiest. If you have your functions in a directory called
/myhome/mytools/, then this command accomplishes it:

dipaddpath('/myhome/mytools')

The first requirement is a bit more complicated. To add this functionality to your own function, copy
the code in Figure 7.1. It shows a complete skeleton for a function. The line that is not written-
out is the one that assigns a structure into paramlist. This structure is the most complicated part
of the function (Figure 7.2 shows an example), but allows both the automatic parsing of the input
parameters and the drawing of the dialog box in the GUI. Automatic parameter parsing is discussed
in Section 7.13.

The parameter structure paramlist contains four values:

menu Name of the menu to place the function in (string).
display Name for the function in the menu (string).
inparams Structure array with input parameters.
outparams Structure array with output parameters.

The function will be added to the end of the menu specified (in alphabetical order). If you want to
change the order of the menu items, you will need to create a localdipmenus function (see Section 8.2).

DIPimage User Manual 37

function out = func_name(varargin)

% The next line defines the parameters your function requires

paramlist = struct(...);

% The next section causes this function to be integrated in

% the menu system

if nargin == 1

s = varargin{1};

if ischar(s) & strcmp(s,’DIP_GetParamList’)

out = paramlist;

return

end

end

% Below, add your own code

out = process_image(varargin);

Figure 7.1: Skeleton GUI function.

inparams = struct(...

’name’,{’image_in’,’percentile’,’filterSize’,’filterShape’},...

’description’,{’Input image’,’Percentile’,’Size of filter’,...

’Shape of filter’},...

’type’,{’image’,’array’,’array’,’option’},...

’dim_check’,{[],0,1,0},...

’range_check’,{’scalar’,[0,100],’N+’,{’rectangular’, ’elliptic’,...

’diamond’,’parabolic’}},...

’required’,{1,0,0,0},...

’default’,{’ans’,50,7,’elliptic’}...

);

outparams = struct(...

’name’,{’image_out’},...

’description’,{’Output image’},...

’type’,{’image’},...

’suppress’,{0}...

);

paramlist = struct(...

’menu’,’Filters’,...

’display’,’Percentile Filter’,...

’inparams’,inparams,...

’outparams’,outparams...

);

Figure 7.2: Sample parameter structure (belongs to the function percf).

paramlist.inparams defines the input parameters, and contains the following fields for each param-
eter:

38 Chapter 7. Toolbox Functions

name Variable’s name (string). Not used (for now).
description Description to show the user (string).
type Expected data type (string).
dim check Expected dimensionality or size.
range check Expected range.
required 1 or 0, to specify whether the default value is useful.
default Default value to use if the parameter is not given.

paramlist.outparams defines the output parameters, and contains the following fields for each pa-
rameter:

name Variable’s name (string), the default output variable in the GUI.
description Description to show the user (string).
type Data type (string).
suppress Suppress output? (0 or 1, optional, defaults to 0)

The parameter description depends on the parameter type. What each of dim check, range check

and default mean depends on the type. Also, each parameter type produces different controls in the
GUI. Recognized types are listed below. Please examine any of the functions in the toolbox that put
themselves on the menu to learn more about this structure.

’image’

An object of type dip image (or dip image array). Numeric arrays are converted to a dip image.
The GUI presents an edit box where you can type any expression. Furthermore, a right-click in this
edit box brings up a list with variables of class dip image defined in the base workspace.

dim check and range check are used to specify the type of image expected. dim check defines the
allowed image dimensionalities through a two-element vector [m,n], where m is the lowest dimension-
ality and n is the highest dimensionality allowed. The expressions 0 and [] map to [0,Inf], meaning
any dimensionality is OK. Any scalar m maps to [m,m], meaning only images with m dimensions are
allowed. For example, to limit your function to 2D and 3D images, use [2,3].

range check is a string or a cell array with strings that defines both the allowed data types and
the image type (scalar, color, tensor, etc.) Allowed are any combination of dip image data types
(see Table 4.1) as well as the data type aliases defined in Table 7.1, and one of the following strings:
’scalar’ (requires isscalar to be true), ’tensor’ (istensor is true, which also allows a scalar
image), ’vector’ (isvector is true, which does not allow a scalar image), ’color’ (iscolor is
true) or ’array’ (any dip image or dip image array object is OK). If none of this set is specified,
’tensor’ is assumed. If range check is [], {’all’,’tensor’} is used. There is no way to control
the length of the vector or the dimensionality of the tensor, you will need to write code to check those
sizes yourself.

default is a string to be evaluated in the base workspace (therefore, you can use any expression with
names of variables in the base workspace). Typically you would use ’a’ or ’b’ as a default value, and
set required to 1. This way, the GUI shows the name of a variable possibly containing an image, but
at the command-line (assuming you use automatic parsing) this default value is never used. It is also
possible to specify something like ’[1,1,1;1,1,1;1,1,1]’ as a default image (as does the function
convolve).

’measurement’

An object of type dip measurement. This input is treated the same as one of type ’image’, except
that dim check and range check are not used; set them to [] to avoid problems if these values become
significant in the future.

DIPimage User Manual 39

Table 7.1: Data type aliases used in the range check parameter for images.
Name maps to

’any’ ’complex’ + bin

’complex’ ’real’ + scomplex, dcomplex

’noncomplex’ ’real’ + bin

’real’ ’float’ + ’integer’

’int’ or ’integer’ ’signed’ + ’unsigned’

’float’ sfloat, dfloat

’sint’ or ’signed’ sint8, sint16, sint32

’uint’ or ’unsigned’ uint8, uint16, uint32

’dataset’

An object of type dataset (from PRTOOLS). This input is treated the same as one of type ’image’,
except that dim check and range check are not used; set them to [] to avoid problems if these values
become significant in the future.

’array’

Any Matlab array. This is a complicated type because of the flexibility when specifying array size
and data type.

dim check defines the allowed array sizes in one of two ways:

• by referring to an image parameter using a positive integer scalar, the dimensionality of the
image pointed to gives the length of the vector required as input here; or

• by directly giving an array size.

The first mode is useful when the array indicates e.g. a filter size (see gaussf) or a coordinate in the
image (see findlocalmax). In both these cases one value per image dimension is required.

The second mode allows any array size, either fixed ([4,4] for a 3D transformation matrix) or flexible
([-1,3] for an RGB color map on any length). The -1 indicates that the length along that dimension
is not tested for. The empty array [] indicates that an empty array is required. An empty array is
not very useful, of course, except that we allow the combination of various size specifications using a
cell array: {[],[1,3],[4,4]} indicates either an empty array, a 3-element vector or a 4-by-4 matrix
are allowed. It is possible to combine references to image parameters and direct array sizes: {[],1}
indicates either an empty array or a vector with as many elements as dimensions are in the first input
image.

0 is a shortcut for [1,1], a scalar value. -1 is a shortcut for {[],[1,-1]}, a row vector of any length
or an empty array.

When using automatic parameter parsing, if a scalar input is given it is extended to satisfy the required
array size. Also, a vector is transposed to match the template, but two- or higher-dimensional arrays
are not. If multiple array size options are given, the first one that matches is the one used.

range check determines the valid range for the values in the array. It must be either an array with
two values (minimum and maximum valid values), an empty array (meaning [-Inf Inf]), or one of
a few strings that are defined for common ranges:

• Integer types: ’N+’ = [1 Inf]. ’N-’ = [-Inf -1]. ’N’ = [0 Inf], ’Z’ = [].

• Real types: ’R’ = []. ’R+’ = [0 Inf]. ’R-’ = [-Inf 0].

40 Chapter 7. Toolbox Functions

Note that if you specify a range by two values, it is considered real. If you require some (finite) integer
range, use the type ’option’.

If required is false, default is any array that satisfies the requirements of dim check and
range check. For positive dim check, provide a scalar as default value, since it is always valid.

’measureid’

A measurement ID in a dip measurement object.

dim check is a positive integer that points to a parameter of type ’measurement’. The GUI shows,
in a drop-down list, all measurement IDs present in the referenced object. The automatic parameter
parsing makes sure the measurement ID given by the user exists in the referenced object.

required should be 0, and dim check and default are ignored. The default is always the first
measurement in the dip measurement object (passing the empty string yields the default as well).

’option’

A value (numerical or string) selected from a list. The GUI presents a drop-down list with options to
choose from.

range check is a cell array with possible options, for example:

• {1,2,3,4}
• {’rectangular’,’elliptic’,’parabolic’}

required should be 0. default is any one value from the list. dim check is ignored.

’optionarray’

A cell array (with numbers or strings) selected from a list. The GUI presents an edit box with a
button. Pressing the button brings up a dialog box that allows selecting one or more items from a
list.

range check is as in ’option’. required should be 0. default is a cell array with values from the
list, or a single value. dim check is 0 if an empty cell array is allowed as input, 1 if at least one value
is required.

’cellarray’

A cell array (with arbitrary cell content). dim check and range check are ignored. default must
be a cellarray.

’infile’

The name of an existing file (for input). The GUI presents an edit box and a button that, when
pressed, presents an “Open...” dialog box.

range check is a string containing the mask for the file name, dim check is ignored, and default is
a string with the default file name.

’outfile’

The name of a file (for output). The GUI presents an edit box and a button that, when pressed,
presents an “Save as...” dialog box. See the comments for ’infile’.

’indir’

DIPimage User Manual 41

The GUI presents an edit box and a button that, when pressed, presents an “Select a directory ...”
dialog box. range check and dim check are ignored, default gives the default directory.

’handle’

The handle of a figure window created by dipshow. It is possible to enter a handle or the name of a
variable (the figure to which it is linked is used). The GUI shows a drop-down list with the titles of
all figure windows that fit the description.

range check is a cell array with strings that specify the type of figure window required. All figure
windows that satisfy any of the strings are valid. Examples are:

• {’1D’,’2D’,’3D’} : either two- or three-dimensional displays.

• {’Color’,’Grey’,’Binary’} : either color, grey-value or binary displays.

• {’1D Color’,’2D Grey’} : either 1D color or 2D grey-value displays.

An empty array means that any window created by dipshow is acceptable. Note that these strings
are not case-sensitive. It is, however, important that the order shown here is maintained. No window
will satisfy the string ’Binary 2D’, for example, but ’2D Binary’ is valid.

dim check and default are ignored. The default value is always gcf (the current figure).

’string’

Any string. dim check and range check are ignored. default must be a string.

’boolean’

The value 1 or 0. Also accepted are the strings ’yes’, ’no’, ’true’ and ’false’, as well as only
the first character of each. The GUI presents a drop-down box with the words “yes” and “no”. The
automatic parameter parsing, however, always returns either 1 or 0. dim check and range check are
ignored. default should be any of the accepted values.

7.13 Automatic Parameter Parsing

To use automatic parameter parsing (through the getparams function), you no longer (since version
1.4.1) need to copy files from the dipimage/private/ directory into your own private/ directory.
The function getparams is directly available.

The code shown in Figure 7.3 needs to be inserted into your function (after the portion used for
the GUI functionality). As you can see, the same data structure paramlist is used for automatic
parameter parsing and for the GUI.

It is not necessary to use the function getparams. If you don’t, you will have a more flexible parameter
parsing, but if you do, you will need to write less code: parameters are guaranteed to be of the chosen
types and in the chosen intervals.

% The next section handles all parameter parsing

try

[var1,var2,var3] = getparams(paramlist,varargin{:});

catch

if ~isempty(paramerror)

error(paramerror)

else

error(firsterr)

end

end

% Below, add your own code

image_out = process_image(var1,var2,var3);

Figure 7.3: Skeleton for a function that uses automatic parameter parsing.

42

DIPimage User Manual 43

Chapter 8

Customizing the DIPimage Environment

8.1 Figure Windows

The single most important thing that can be customized in the DIPimage environment is the way that
images are displayed to figure windows. It is possible to link a variable name with a figure handle,
such that that variable is always displayed in that same window. If a variable is not linked to any
window, a new one will be opened to display it. The command dipfig is used to create these links
(see Section 7.7).

8.2 Graphical user Interface

The DIPimage toolbox contains a GUI with a menu system for easy calling of toolbox functions. It
is not necessary to use this GUI, but it is the easy way of finding the functions defined in the toolbox
(see Section 7.1).

All functions that appear on the menus are in the toolbox directory or on the DIPimage path. If you
want to add any functions to this menu system, read Section 7.12. If you want your function to appear
in a specific place in the menu system, you will have to create a function called localdipmenus. It
gives you the opportunity to edit the cell array menulist created by dipmenus, which specifies in
which menu each function should be placed. It also allows you to provide a list of functions not to be
put on the menus at all.

The cell array menulist has two columns. The left column gives the names of the menus, the right
column contains cell arrays with the function names and menu names that are to be put under each
menu. Any function not mentioned in this array will be put at the bottom of the menu specified by
the function itself, in alphabetical order. See the code for dipmenus to see how it is defined.

The list of functions to be excluded overrides the menulist. Any function in this list will not be
queried when generating the menu system.

Figure 8.1 provides an example for a localdipmenus function. It adds a menu to the menulist, and
puts all AVI-related functions on the exclude list. Note the string ’-’ that inserts a separator in the
menu.

An alternative is to edit the dipmenus function. We do not recommend this because you will be
required to make the same changes each time you install a new version of DIPimage.

The DIPimage GUI will call the dipinit command when starting. It initializes the working environ-
ment. See Section 8.3.

Another thing that can be customized in the GUI is whether the command it executes should be
printed to Matlab’s command window. This is useful for copying and pasting the command being
executed to some script or function. It is on by default, and can be switched off by typing

dipsetpref('PutInCommandWindow','off')

44 Chapter 8. Customizing the DIPimage Environment

function [menulist,excludelist] = localdipmenus(menulist)

I = size(menulist,1)+1;

menulist{I,1} = ’My Functions’;

menulist{I,2} = {’gaussf’,’unif’,’kuwahara’,’-’,’closing’,’opening’};

excludelist = {’readavi’,’writeavi’,’writedisplayavi’};

Figure 8.1: Sample localdipmenus function.

8.3 Initialization File

The DIPimage GUI will call the dipinit command when starting. It initializes the working environ-
ment, setting up figure windows and the like. You can also call it yourself, to return the windows to
their starting positions. You can edit this file to suit your need (or you can create a local copy, mak-
ing sure that it sits on the Matlab path before the original one; this is recommended in multi-user
systems). Since it is a script, not a function, it can initialize some variables if you like. It can also be
used to position the DIPimage GUI to the place of your liking:

set(0,'ShowHiddenHandles','on')

h = findobj('tag','DIPimage_Main_Window');

set(h,'Position',[500,600,500,100])

set(0,'ShowHiddenHandles','off')

8.4 Other Settings

Other settings are available through the dipsetpref command (see Section 7.8). They are listed
below:

BinaryDisplayColor

Value: 3x1 array of floats between 0 and 1

Default : [1 0 0]

This specifies the color used to display the object pixels in a binary image. Be default they are red,
out of historical reasons. Some people prefer a different color, such as [1 1 1] or [0 1 0].

BoundaryCondition

Value: string

Default : ’symmetric’

Setting this value causes dip setboundary to be called. This causes the algorithm that extends the
image beyond its boundary to change, for all filter operations.

BringToFrontOnDisplay

Value: ’on’ or ’off’

Default : ’on’

This setting controls whether dipshow brings a window to the front when displaying a new image, or
updating an old one.

DIPimage User Manual 45

CommandFilePath

Value: string

Default : ’’

This setting stores the path used by the DIPimage GUI to find the functions that must be added to
the menu system. The DIPimage toolbox directory does not need to be in this path, since it is always
used. On UNIX and Linux systems, directories are separated by a colon (:), on Windows systems by
a semicolon (;).

ComplexMappingDisplay

Value: string

Default : ’x+iy’

This only affects display of complex images. When using the Pixel testing mode in the image display
window, the pixel value can be displayed as real and imaginary components (’x+iy’), or as magnitude
and phase components(’r/phi’).

ComputationLimit

Value: integer

Default : 64 ∗ 10242

This only affects operations done on dip image objects in Matlab (not operations that involve DIPlib
itself). Matlab can only compute (properly) using floating-point values, so images of integer types
are converted to either single or double to do the computation. To avoid excessive memory usage,
the images are chopped in blocks to do this conversion. ComputationLimit sets the size of these
blocks, in bytes. Versions of Matlab prior to 7.0 can only compute using double-precision floats, so
images of type single are also processed this way.

ConflictingPixelSize

Value: ’ignore’, ’first’, ’second’, ’pixel’, ’warning’ or ’error’

Default : ’first’

If the pixel sizes of two images in an arithmetic operation are different, this option specifies what
should happen. The ’pixel’ and ’warning’ option cause the output image to have the default pixel
size along all dimensions. The ’error’ option disallows the operation by generating an error message.
The ’ignore’ and ’first’ options keep the pixel size of the first image. The ’second’ option keeps
the pixel size of the second image.

CurrentImageFileDir

Value: string

Default : ’’

This setting stores the directory last visited by the file selection dialog boxes of readim, readcolorim,
readroiim and writeim. It is used by these functions to open the file selection dialog box in the
directory you last used.

CurrentImageSaveDir

Value: string

46 Chapter 8. Customizing the DIPimage Environment

Default : ’’

This setting stores the directory last visited by the file selection dialog box of the “Save display...”
option of the “File” menu of the figure windows. It is used to open the file selection dialog box in the
directory you last used. An empty string means that the current directory is to be used.

DebugMode

Value: ’on’ or ’off’

Default : ’off’

When this option is turned on, error messages are more verbose, and errors in the DIPimage toolbox
are easier to track. It is used for developing GUI functions.

DefaultActionState

Value: string

Default : ’diptest’

This is the action mode that will be enabled by dipshow when displaying an image to a new window,
or to a window with a mode not compatible with the image being displayed. Possible values are
’none’, ’diptest’, ’diporien’, ’dipzoom’ and ’dipstep’. See Section 6.2.

DefaultColorMap

Value: string

Default : ’grey’

This is the colormap that will be used by dipshow when displaying an image to a new window. Possible
values are ’grey’, ’periodic’, ’saturation’, ’zerobased’ and ’labels’. See Sections 7.3 and
6.1.

DefaultComplexMapping

Value: string

Default : ’abs’

This is the complex mapping mode that will be enabled by dipshow when displaying an image to a
new window, or to a window with a mode not compatible with the image being displayed. Possible
values are ’abs’, ’phase’, ’real’ and ’imag’. See Sections 7.3 and 6.1.

DefaultFigureHeight

Value: integer

Default : 256

This value determines the height of a window created by dipshow or dipfig, unless a size is explicitly
given.

DefaultFigureWidth

Value: integer

Default : 256

This value determines the width of a window created by dipshow or dipfig, unless a size is explicitly
given.

DIPimage User Manual 47

DefaultGlobalStretch

Value: ’on’ or ’off’

Default : ’off’

Set this option if you want global stretching for 3D/4D images on by default. See Sections 7.3 and
6.1.

DefaultMappingMode

Value: string

Default : ’normal’

This is the mapping mode that will be enabled by dipshow when displaying an image to a new window,
or to a window with a mode not compatible with the image being displayed. Possible values are ’lin’,
’percentile’, ’log’, ’base’, ’angle’ and ’orientation’. See Sections 7.3 and 6.1.

DefaultSlicing

Value: string

Default : ’xy’

Sets the direction in which 3D/4D volumes are sliced by default. Possible values are ’xy’, ’xz’ and
’yz’. See Sections 7.3 and 6.1.

DerivativeFlavour

Value: string

Default : ’spatial’

Sets the way Gaussian derivatives are computed: either by spatial convolution with a Gaussian deriva-
tive or via the Fourier domain. The second is slower and uses more memory, but will be more accurate
for small sigmas. Possible values are ’spatial’ and ’fourier’.

DisplayToFigure

Value: ’on’ or ’off’

Default : ’on’

When this setting is ’on’, the display method of the dip image object sends the image data to a
figure window. When it is ’off’, disp is called instead. The display method is called when a Matlab
command does not end with a semicolon. See Section 4.2 for more information on this behavior.

EnableKeyboard

Value: ’on’ or ’off’

Default : ’on’

If you set this value to ’off’, the keyboard will be disabled when displaying an image. This is useful
for Windows machines, on which the figure window will get keyboard focus when displaying an image.
This can be annoying when you want to continue typing. Enable the keyboard callback for a figure
window using the appropriate menu item under “Actions”.

FileWriteWarning

48 Chapter 8. Customizing the DIPimage Environment

Value: ’on’ or ’off’

Default : ’off’

If you set this to ’on’ everything you write a non-standard TIFF image in terms of byte depth or
compression a warning will be displayed on the screen. This is useful as many image viewer cannot
read anything but uint8 uncompressed images (e.g. the standard Windows image TIFF viewer).

FFTtype

Value: ’diplib’ or ’fftw’

Default : ’diplib’

Selects which FFT routine is used for computation in the functions ’ft’ and ’ift’. The ’diplib’

option uses the routine in DIPlib, the ’fftw’ option uses the ’fftn’ routine in Matlab, which uses
the FFTW library. The ’fftw’ option is usually much faster.

Gamma

Value: 3x1 array of floats

Default : [1 1 1]

These parameters control the display of all colour images shown by dipshow. If the values are different
from unity a gamma correction is applied before displaying any image. The different values control
the behaviour for the Red, Green and Blue channel respectively.

GammaGrey

Value: float

Default : 1

Similar to ’Gamma’, but only for grey-value images. This parameter controls the display of all grey-
value images shown by dipshow. If the value is different from unity a gamma correction is applied
before displaying any image.

ImageFilePath

Value: string

Default : ’’

This setting stores the path used to find image files. The functions readim, readcolorim and
readroiim look for a file first in the current directory, and then in each of the directories given
by this option, unless the filename already contains a path. On UNIX and Linux systems, directories
are separated by a colon (:), on Windows systems by a semicolon (;).

ImageSizeLimit

Value: integer

Default : 4096

This is the maximum size of an image automatically displayed through display. If any of the sizes
of an image is larger, you will need to display it manually using dipshow. The reason behind this
behavior is that such an image is most likely to be created accidentally, and not meant for display
anyway. For example, a(a>10) returns a 1D image with all pixel values of a larger than 10; this is
very useful, but not interesting to look at. For a large a (such as a 3D image), the display of the

DIPimage User Manual 49

resulting 1D image might require a lot of memory.

InconsistentPixelSize

Value: ’ignore’, ’pixel’, ’warning’ or ’error’

Default : ’pixel’

If the pixel sizes along the various dimensions of an image are different, this option specifies what
should happen when these dimensions are mixed. The ’pixel’ and ’warning’ option cause the
output image to have the default pixel size along all dimensions. The ’ignore’ option keeps the pixel
size information as is. The ’error’ option disallows the operation by generating an error message.

KeepDataType

Value: ’on’ or ’off’

Default : ’off’

Setting this option to ’on’ causes arithmetic operations to produce images of the same data type as
the input images. In the case of an operation between an image and a Matlab array, the data type
of the image is used. In case of an operation between two images with different type, the larger of the
two types is chosen for the result.

MorphologicalFlavour

Value: integer

Default : 0

This setting stores the state usually set though dip morph flavour. The value 0 causes the mor-
phological operations to follow the definition of Serra and Soille, 2 is for the definition followed by
Heijmans and Haralick. Any other value is equivalent to 0.

NumberOfThreads

Value: integer

Default : usually the number of cores in your system, or the value given by the OMP NUM THREAD

environment variable.

The number of threads used for computation by DIPlib. This does not affect the computations
performed by Matlab itself.

PutInCommandWindow

Value: ’on’ or ’off’

Default : ’on’

This option causes commands that are executed from the DIPimage GUI to be printed to the command
window. This makes it possible to copy and paste commands being executed to a Matlab script.

RespectVisibility

Value: ’on’ or ’off’

Default : ’off’

By default, dipshow hides a window while it prepares for displaying a new image, then makes it visible
again. This speeds up the process, and removes flickering. Setting ’RespectVisibility’ to ’on’ the

50 Chapter 8. Customizing the DIPimage Environment

window remains visible if it was visible (some flickering might occur), and hidden if it was hidden.

TrueSize

Value: ’on’ or ’off’

Default : ’on’

This setting controls whether diptruesize is called after an image is displayed to a figure window
(see Section 7.4).

Truncation

Value: integer

Default : 3

Setting this value causes dip settruncation to be called. This changes all finite impulse response
Gaussian filters (this number represents the extent of the filtering kernel, in terms of the given param-
eter sigma). Note that the Gaussian filters are also available as IIR (infinite impulse response) filters
and as Fourier Domain filters; these versions are not affected by the truncation parameter.

UserManualLocation

Value: string

Default : The URL needed to fetch the user manual online.

This setting stores the location of the DIPimage User Manual (a PDF file). By default it points to
an address online, but you can change it to point to a local copy of the PDF file. A link on the Help
menu of the DIPimage GUI and on the Matlab Start Button are affected by this setting.

Chapter 9

Low-level DIPlib Interface

The DIPimage toolbox is build around DIPlib, which is a library of image-processing functions written
in C. Most of these functions can be directly called from within Matlab through a low-level interface.
This interface is not as easy to use as the toolbox functions, but it is more complete.

9.1 The Setup

For each function available in the low-level interface, there is a MEX-file (which is just a shared object
Matlab links to), and an M-file, which just contains some help on calling the function. However, this
help is very meager, since it only lists the name and type of each parameter. Only when the function
does more than just call the equivalent DIPlib function, are there any comments on how the function
works. You will need to check the online DIPlib documentation to see what each of the parameters
does. The online function reference can be found at:
ftp://ftp.tudelft.nl/pub/DIPimage/latest/docs/reference/index.html.

9.2 Calling DIPlib Functions

You will notice that the parameters required by the interface are exactly those required by the C
functions, but with some exceptions:

• The output parameters are naturally placed at the left-hand side of the function call. In the
corresponding C functions, they are always on the right-hand side. The interface generates an
error when the C function returns an error code.

• The parameters corresponding to the random number generator are stored internally by the
interface and thus are not needed at the command line.

• The parameters corresponding to the extension of the image beyond the boundaries and the trun-
cation of the Gaussian kernel are also not present in the interface. The default values for these
parameters are used. These defaults can be set and read with the functions dip setboundary,
dip getboundary, dip settruncation and dip gettruncation.

• None of the DIPlib library variables is passed back to Matlab. This means that any parameter
of the type dip Resources and the like are not present in the Matlab interface.

• Enumerated values in the C functions have been implemented as strings in the Matlab interface.
The function’s help will list these strings, which are easy to map to the names of the enumerated
values (use help parameters if in doubt). If a function requires an array of these values, the
strings should be put in a cell array.

By the way, all DIPlib interface functions have all characters in lower-case, and start with the characters
“dip ”, or “dipio ” for the functions in the dipIO extension library.

Whenever an image is required as input, it is legal to pass either a numeric Matlab array or a
dip image object. Parameters of the type dip FloatArray and the like are usually expected to be

51

ftp://ftp.tudelft.nl/pub/DIPimage/latest/docs/reference/index.html

52 Chapter 9. Low-level DIPlib Interface

of the same length as the dimensionality of the input image. The low-level interface is so low-level
that it does not even check these simple things, and DIPlib will generate an error if the array is not
of the correct size. Many parameters are allowed to be null pointers in the C library. Sometimes it is
possible to pass an empty array as such a value (for example, pass an empty array as a mask image
if no masking is required).

9.3 Example Function Call

As an example, let us call the DIPlib functiondip Gauss from within Matlab. The declaration of
the C function is:
dip_Error dip_Gauss (

dip_Image in,

dip_Image out,

dip_BoundaryArray boundary,

dip_BooleanArray process,

dip_FloatArray sigmas,

dip_IntegerArray parOrder,

dip_float truncation

);

As explained earlier, the parameters boundary and truncation should not be used from within
Matlab. The globally defined default values will be used. The parameter out should be on the left
of the function call. What remains is this:

out = dip_gauss(in,process,sigmas,parOrder);

which we can verify by typing

help dip_gauss

This also gives us the expected data types for each parameter. The data types correspond with those
expected by the C function:

dip_gauss Gaussian Filter.

out = dip_gauss(in, process, sigmas, parOrder)

in

Image.

process

Boolean array.

sigmas

Real array.

parOrder

Integer array.

Parameter in can be a dip image or any numeric array. The length of the other arrays should match
the dimensionality of the image. We will use a two-dimensional image a, which we want to smooth by
convolution with a Gaussian with sigma 5 in the y-direction and 2 in the x-direction. We would write

b = dip_gauss(a,[1,1],[2,5],[0,0]);

As can be read in the online help for DIPlib, parOrder indicates the order of the derivative. The
process array, which is present in many DIPlib functions, can be used to apply the filter only in some
dimensions.

DIPimage User Manual 53

The dipimage/demos/ directory contains some example M-files. Examine demogdt.m for an example
on using the low-level interface.

Chapter 10

DIPimage and the Matlab Compiler

10.1 The Matlab Compiler

Since Matlab version 7.0 (Release 14), the Matlab Compiler no longer generates C or C++ code
from M-files. Instead, it packages all M-files and MEX-files into a Component Technology File (CTF)
archive, generates a small stub executable, and requires the end user to install the Matlab Component
Runtime (MCR). This MCR is the Matlab interpreter (but without licensing restrictions). The upside
of this is that there are no longer limitations as to what M-files can be compiled, meaning it is now
possible to create standalone applications that use DIPimage. The downside is that, since code is not
really compiled, there is no performance benefit to compiling.

The Matlab compiler can generate shared objects (dynamically linked libraries) as well as executa-
bles. This means that it is still possible to compile M-file code so that it can be called from your own
C or C++ code, even though this compiled M-file code can no longer be statically linked into your
executable.

M-files in the CTF archive are encrypted so that it is not possible to obtain source code from the
compiled application. MEX-files are also protected in some way so they cannot be run outside of the
deployed application. Therefore, even though the code is not truly compiled, your code is reasonably
well protected against reverse-engineering.

The explanations below are for Linux/UNIX systems. If you use Windows, similar issues
will have to be taken into account. The Matlab Compiler User’s Guide (available online at
http://www.mathworks.com/access/helpdesk/help/pdf doc/compiler/compiler.pdf) contains all the
information needed to compile an M-file that uses DIPimage.

10.2 Compiling an M-file that uses DIPimage

Please first read the Matlab Compiler User’s Guide, and make sure you are able to generate the
magicsquare.m stand-alone example application using the mcc command (not through the deploytool
GUI, since the explanations below assume you are familiar with mcc).

There are a few things that have to be taken into account when your M-file uses DIPimage. First, like
with other toolboxes, the DIPimage directory must not be added to the Matlab path through the
startup.m file (as suggested in the DIPimage installation instructions), but through the mcc command
line. Second, instead of calling dip initialise, call dip initialise libs.

dip initialise searches for the correct version of the DIPimage toolbox to use, depending on the
Matlab version you are running. It then adds the necessary paths and calls dip initialise libs.
Since this process doesn’t work with the Matlab Compiler, you will need to do these two steps
separately.

Hence, you need to create a special version of your startup.m file in the directory where your ap-
plication M-file lives. Remove all the addpath instructions, and change the line dip initialise

54

http://www.mathworks.com/access/helpdesk/help/pdf_doc/compiler/compiler.pdf

DIPimage User Manual 55

into dip initialise libs (if you do not want the DIPlib version information to be displayed on
startup, you can use the ’silent’ argument to dip initialise libs). Alternatively, you can call
the dip initialise libs function in your application M-file. In this case, make and empty startup.m

file to avoid your default one to be used.

To find out which directories you need to add to the Compiler search path, type path on the Matlab
command line. It should return a long list of directories, three of which look like this:

/something/dip/common/mlv7_4/diplib

/something/dip/common/mlv7_4/dipimage_mex

/something/dip/common/dipimage

These three paths can be added the the mcc command line using the ‘-I’ argument:

mcc -m myapplication.m ...

-I /something/dip/common/dipimage ...

-I /something/dip/common/mlv7_4/dipimage_mex ...

-I /something/dip/common/mlv7_4/diplib

Under some circumstances, mcc might give a warning telling you that the dip initialise libs

command is unknown. However, when running the resulting executable, DIPlib gets initialized just
fine. This must be due to the order in which paths get added and commands are executed.

When running the stand-alone application you just created, the three DIPlib shared libraries must
be on the LD LIBRARY PATH environment variable, as discussed in Section 2.2. It is possible to edit
the shell script that is created by mcc (run myapplication.sh) to properly set the LD LIBRARY PATH

environment variable.

10.3 Deploying your compiled program

First of all, note that you need a special license of DIPimage and DIPlib to be able to dis-
tribute a program that uses this toolbox and associated libraries. Please read our web page
(http://www.diplib.org/) for information on how to obtain such a license.

The CTF file created by mcc needs either the exact same version of Matlab, or the MCR created
with that version, to run. It will also need the three DIPlib shared libraries libdip.so, libdipio.so
and libdml mlvX X.so (the name of this last SO file should match the directory name given as
path to the Matlab Compiler). The end-user needs to install these three libraries and adjust the
LD LIBRARY PATH environment variable prior to starting the executable.

There is a very simple way of including the DIPlib libraries in the CTF file:

mcc -m myapplication.m ...

-I /something/dip/common/dipimage ...

-I /something/dip/common/mlv7_4/dipimage_mex ...

-I /something/dip/common/mlv7_4/diplib ...

-a /something/dip/Linux/libdip.so ...

-a /something/dip/Linux/libdipio.so ...

-a /something/dip/Linux/libdml_mlv7_4.so

The CTF archive will be called myapplication.ctf, and, once extracted, the DIPlib libraries will be
in the directory myapplication mcr/something/dip/Linux/ (assuming 32-bit Linux OS).

Thus, assuming your user puts the files myapplication.ctf and myapplication into the directory
/home/user/myapp/, and installed the MCR into /usr/local/mcr/v76/, your user will have to do

http://www.diplib.org/

56 Chapter 10. DIPimage and the Matlab Compiler

the following to start the application:

MCRROOT=/usr/local/mcr/v76

LD_LIBRARY_PATH=/home/user/myapp/myapplication_mcr/something/dip/Linux/

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRROOT}/runtime/glnx86

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRROOT}/bin/glnx86

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRROOT}/sys/os/glnx86

MCRJREVER=`cat ${MCRROOT}/sys/java/jre/glnx86/jre.cfg`

MCRJRE=${MCRROOT}/sys/java/jre/glnx86/jre${MCRJREVER}/lib/i386

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}/native_threads

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}/server

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}/client

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}

XAPPLRESDIR=${MCRROOT}/X11/app-defaults

export LD_LIBRARY_PATH

export XAPPLRESDIR

/home/user/myapp/myapplication <arguments>

You would do good creating a little shell script that collects these commands, and provide it with
your executable (instead of run myapplication.sh).

Note that, in the shell commands above, the ones that contain MCRJRE are needed only if Java is
enabled. You can add -R "-nojvm" to the mcc command to disable Java if your application does not
use it. In the same way, add -R "-nodisplay" if your application does not use the graphic display.

	 Introduction
	The DIPimage toolbox
	The DIPlib library
	Image Processing
	Documentation Conventions
	Acknowledgments

	 Installing DIPimage
	Windows Installation
	Automatic Installation
	Manual Installation

	UNIX Installation
	MacOS X Installation
	Loading libraries in Matlab
	Loading scripts in Matlab

	 Getting Started
	Starting the GUI
	Loading and Displaying an Image
	Pre-processing the Image
	Measuring
	Where to Go from Here

	 The dip_image Object
	Creating a dip_image Object
	Displaying dip_image Objects
	Operations on dip_image Objects
	Dimensions
	Indexing Pixels
	Image Arrays
	Tensor Images
	Color Images
	A Note on the end Method in Indexing
	Special Functions
	Review of the Differences Between a dip_image and a Matlab Array

	 The dip_measurement Object
	Extracting Measurement Data
	Other Information on the dip_measurement Object
	Combining Measurement Data
	Adding Measurement Data
	Converting a dip_measurement Object to a dataset Object
	Creating a dip_measurement Object with Your Own Data
	Backwards Compatibility

	 Figure Windows
	The Figure Window Menus
	Using the Mouse in Figure Windows
	Using the Keyboard in Figure Windows
	Linking Variables with Figure Windows
	Setting the Position of Figure Windows

	 Toolbox Functions
	The GUI: dipimage
	The dipshow Function
	Figure Window Support: dipmapping
	Figure Window Support: diptruesize
	Figure Window Support: diptest, dipzoom, et al.
	Figure Window Support: diplink
	Creating, Linking and Clearing Figure Windows: dipfig and dipclf
	Toolbox Preferences: dipsetpref and dipgetpref
	Interactive Tools: dipcrop, dipgetcoords, et al.
	Other 3D Visualization Tools: dipanimate, dipisosurface, dipprojection
	Image Processing Functions
	Adding Functions to the GUI
	Automatic Parameter Parsing

	 Customizing the DIPimage Environment
	Figure Windows
	Graphical user Interface
	Initialization File
	Other Settings

	 Low-level DIPlib Interface
	The Setup
	Calling DIPlib Functions
	Example Function Call

	 DIPimage and the Matlab Compiler
	The Matlab Compiler
	Compiling an M-file that uses DIPimage
	Deploying your compiled program

