
DIPimage User Manual

dr. ir. Cris L. Luengo Hendriks

prof. dr. ir. Lucas J. van Vliet

dr. dipl. phys. Bernd Rieger

dr. ir. Michael van Ginkel

ing. Ronald Ligteringen

Quantitative Imaging Group,
Department of Applied Sciences, Delft
Delft University of Technology March 17, 2011

Contents

1 Introduction 1
1.1 The DIPimage toolbox . 1
1.2 The DIPlib library . 1
1.3 Image Processing . 2
1.4 Documentation Conventions . 2
1.5 Acknowledgments . 2

2 Installing DIPimage 3
2.1 Windows Installation . 3

2.1.1 Automatic Installation . 3
2.1.2 Manual Installation . 4

2.2 UNIX Installation . 5
2.3 MacOS X Installation . 5

3 Getting Started 7
3.1 Starting the GUI . 7
3.2 Loading and Displaying an Image . 7
3.3 Pre-processing the Image . 8
3.4 Measuring . 10
3.5 Where to Go from Here . 11

4 The dip image Object 12
4.1 Creating a dip image Object . 12
4.2 Displaying dip image Objects . 13
4.3 Operations on dip image Objects . 13
4.4 Dimensions . 14
4.5 Indexing Pixels . 15
4.6 Image Arrays . 16
4.7 Tensor Images . 17
4.8 Color Images . 18
4.9 A Note on the end Method in Indexing . 18
4.10 Special Functions . 19
4.11 Review of the Differences Between a dip image and a Matlab Array 24

5 The dip measurement Object 26
5.1 Extracting Measurement Data . 26
5.2 Other Information on the dip measurement Object 26
5.3 Combining Measurement Data . 27
5.4 Adding Measurement Data . 27
5.5 Converting a dip measurement Object to a dataset Object 28

III

IV Contents

5.6 Creating a dip measurement Object with Your Own Data 28
5.7 Backwards Compatibility . 28

6 Figure Windows 29
6.1 The Figure Window Menus . 29
6.2 Using the Mouse in Figure Windows . 30
6.3 Using the Keyboard in Figure Windows . 31
6.4 Linking Variables with Figure Windows . 32
6.5 Setting the Position of Figure Windows . 32

7 Toolbox Functions 34
7.1 The GUI: dipimage . 34
7.2 The dipshow Function . 34
7.3 Figure Window Support: dipmapping . 35
7.4 Figure Window Support: diptruesize . 35
7.5 Figure Window Support: diptest, dipzoom, et al. 36
7.6 Figure Window Support: diplink . 36
7.7 Creating, Linking and Clearing Figure Windows: dipfig and dipclf 37
7.8 Toolbox Preferences: dipsetpref and dipgetpref 37
7.9 Interactive Tools: dipcrop, dipgetcoords, et al. 38
7.10 Other 3D Visualization Tools: dipanimate, dipisosurface, dipprojection 38
7.11 Image Processing Functions . 38
7.12 Adding Functions to the GUI . 38
7.13 Automatic Parameter Parsing . 44

8 Customizing the DIPimage Environment 45
8.1 Figure Windows . 45
8.2 Graphical user Interface . 45
8.3 Initialization File . 46
8.4 Other Settings . 46

9 Low-level DIPlib Interface 53
9.1 The Setup . 53
9.2 Calling DIPlib Functions . 53
9.3 Example Function Call . 54

10 DIPimage and the Matlab Compiler 56
10.1 The Matlab Compiler . 56
10.2 Compiling an M-file that uses DIPimage . 56
10.3 Deploying your compiled program . 57

Chapter 1

Introduction

1.1 The DIPimage toolbox

Matlab is a software package designed for (among other things) data processing. It contains
a huge amount of numerical algorithms, and very good data-visualization abilities. This
makes it adequate for image processing. However, Matlab’s virtues do not end there. It is
also an ideal tool for rapid prototyping, since it handles a compact but simple notation and it
is very easy to add functions to it. The drawback is that Matlab, since it is an interpreted
language, is slow for some constructs like loops; it also is not very efficient with memory (for
example, all Matlab data uses 8-byte floats). This makes it a bit less useful beyond the
prototyping stage.

DIPimage is a Matlab toolbox for doing image processing, and is based on the image-
processing library DIPlib. It is meant as a tool for research as well as teaching image pro-
cessing at various levels. It is not meant as an industrial image-processing package, which
should heavily depend on speed and memory-efficiency. Instead, this toolbox is made with
user-friendliness, ease of implementation of new features, and compactness of notation in
mind.

Most arithmetic operations are done by Matlab. However, implementing image-processing
filters usually requires several nested loops (depending on the dimensionality of the input
data), which is not very efficient. Therefore, we based this toolbox on DIPlib. It provides all
filtering and transform functions and is the heart of the DIPimage toolbox.

1.2 The DIPlib library

DIPlib is a scientific image-processing library written in C. It contains a large number of
functions for processing and analyzing multi-dimensional image data. The library provides
functions for performing transforms, filter operations, object generation, and statistical anal-
ysis of images. It is also very efficient (with both memory and time).

The Matlab interface to DIPlib is a simple “glue” layer, which allows calling the C functions
in the library by converting the Matlab data to a form used by the library. Only a few
functions have added functionality in the interface. Using these functions therefore is much
like using the C functions directly. This is not adequate for the beginning image analyst, who
is better off using the DIPimage toolbox functions instead.

More information on DIPlib can be found at:
http://www.diplib.org/.

1

http://www.diplib.org/

2 Chapter 1. Introduction

1.3 Image Processing

This manual is meant as an introduction and reference to the DIPimage toolbox, not as a
tutorial on image processing. Although Chapter 3 shows some image-processing basics, it
is not complete. We refer to “The Fundamentals of Image Processing”, an online image-
processing course, which can be found at:
ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf.

1.4 Documentation Conventions

The following conventions are used throughout this manual:

• Example code: in typewriter font

• File names and URLs: in typewriter font

• Function names/syntax: in typewriter font

• Keys: in bold

• Mathematical expressions: in italic

• Menu names, menu items, and controls: “inside quotes”

• Description of incomplete features: in italic

1.5 Acknowledgments

DIPlib was written mainly by Michael van Ginkel, Geert van Kempen, Cris Luengo and
Lucas van Vliet; the Matlab interface to DIPlib was written by Cris Luengo, with help from
Michael van Ginkel.

The DIPimage toolbox was written mainly by Cris Luengo, Lucas van Vliet, Bernd Rieger
and Michael van Ginkel. Tuan Pham, Kees van Wijk, Judith Dijk, Geert van Kempen and
Peter Bakker have contributed functionality.

DIPlib and the DIPimage toolbox are being developed at the Quantitative Imaging Group,
Delft University of Technology. Lucas van Vliet is the project supervisor.

ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf

Chapter 2

Installing DIPimage

This toolbox requires Matlab 5.3/R11 or later, though the official distributions are compiled
with later versions of Matlab and do not run on earlier versions. The download page
on the DIPimage web site should specify the versions of Matlab a specific distribution is
compatible with. Some functionality is only available on later versions of Matlab, but this
is an exception.

The bulk of the toolbox is platform-independent. This means that the distributions for the
various platforms contain exactly the same functionality, with very few exceptions. However,
you do need to obtain the distribution specific to your platform, because the toolbox contains
code compiled to work on a specific platform. You can install the same version of the toolbox
for different platforms to the same directory. The files that have the same name in the various
distributions are identical (assuming they are of the same release!), the platform-specific files
have unique names and paths. For example, on Windows you can install both the 32-bit and
64-bit versions of the toolbox into the same directory.

2.1 Windows Installation

2.1.1 Automatic Installation

If you have an earlier version of DIPimage installed, it is important that you remove it
before installing this version. Previous versions installed with the automatic installation tool
can be uninstalled through the program management tool in Windows. A previous version
installed manually should be uninstalled by either deleting or renaming the whole directory,
and undoing any other changes made during installation.

To install DIPimage, simply run the installation program and follow the directions in it. The
tool will tell you to start Matlab and type the command

run(’C:\Program Files\dip\dipstart.m’)

where C:\Program Files\dip\ is the directory to which you installed DIPimage. The script
dipstart.m, executed this way, contains three commands needed to initialise the toolbox
(two if you didn’t install the images). These must be executed every time you start Matlab.
You can modify (or create) a file startup.m in the directory to which Matlab starts up, to
contain the run command above. The script startup.m is executed automatically every time
Matlab starts.

Optionally, you can add these directories to your path too:
C:\dip\common\dipimage\demos
C:\dip\common\dipimage\aliases

3

4 Chapter 2. Installing DIPimage

The first one contains a few demos that show how to use different features of the toolbox. The
second one is only for backwards-compatability, and contains aliases for functions that have
changed their names since the first release. You will need these aliases if you have written
M-files that use any of the functions that have changed names. However, we recommend you
change your functions to use the new names.

2.1.2 Manual Installation

If you have an earlier version of DIPimage installed, it is important that you remove it
before installing this version. Previous versions installed with the automatic installation tool
can be uninstalled through the program management tool in Windows. A previous version
installed manually should be uninstalled by either deleting or renaming the whole directory,
and undoing any other changes made during installation.

Unzip the distribution file dipimage X.X XXX winXX.zip to any destination (say, C:\). It will
generate a directory C:\dip with two sub-directories: C:\dip\common\ and C:\dip\win32\
or C:\dip\win64\, depending on the version you downloaded. The first one contains the
Matlab toolbox, the second one the DIPlib library files, support libraries and include files.

You also might want to unzip the images file images.zip to the C:\dip directory. It will
create a directory C:\dip\images\ with some default images.

To start using DIPimage, do the following in Matlab:
addpath(’C:\dip\common\dipimage’)
dip_initialise
dipsetpref(’imagefilepath’,’C:\dip\images’)

(make sure to substitute ’C:\dip\’ for the name of the directory where you unzipped the
distribution file). This will add the DIPimage toolbox and low-level DIPlib interface to the
beginning of the path, initialize DIPlib and set the default directory where DIPimage will
look for images.

You can add these lines to your startup.m file, which should be in your working directory.
That way, DIPimage will be ready to use each time you start Matlab.

Optionally, you can add these directories to your path too:
C:\dip\common\dipimage\demos
C:\dip\common\dipimage\aliases

The first one contains a few demos that show how to use different features of the toolbox. The
second one is only for backwards-compatability, and contains aliases for functions that have
changed their names since the first release. You will need these aliases if you have written
M-files that use any of the functions that have changed names. However, we recommend you
change your functions to use the new names.

Note: On versions of Matlab since version 7.2, it is no longer necessary for Windows to be
able to find the DIPlib library files (unless you are creating a stand-alone executable using
DIPlib, but that’s a different topic altogether). If you have a version of Matlab that is older
than 7.2, and happen to find a version of DIPimage that works with your version of Matlab
(these are no longer supported), you will need to modify the PATH environment variable to
contain the C:\dip\win32\lib\ or (C:\dip\win64\lib\) directory. You must modify this
environment variable before starting Matlab, and possibly must restart Windows for this

DIPimage User Manual 5

change to take effect.

2.2 UNIX Installation

If you already have a version of DIPimage installed, rename the directory it is in, so that you
will still have the old version if the installation of the new version fails. Untar the distribution
file. It will create a directory dip/ with a number of subdirectories. If you untarred the file
in the directory /something/, you now have a directory /something/dip/. To get DIPimage
running, there are a number of things that you must do:

1. Matlab must be told where it can find DIPlib, a shared library, that is used by
DIPimage. You can do this by creating the environment variable LD LIBRARY PATH,
or extending it if it already exists. As the name suggests, it holds a collection of paths.
The entries are separated by colons, i.e. ‘:’. Which entry you should add, depends on
the type of machine you are working on:

• On Solaris add: /something/dip/SunOS/lib/:/something/dip/SunOS32/lib/

• On Linux add: /something/dip/Linux/lib/

• On 64-bit Linux add: /something/dip/Linuxa64/lib/

2. If you did not do so before: download the separate tar or zip file containing some test
images. Install them somewhere on your system. Let us assume that you installed them
in /herebeimages/.

3. Add the following lines to your startup.m (preferably in $HOME/matlab/):
addpath(’/something/dip/common/dipimage’)
dip_initialise
dipsetpref(’imagefilepath’,’/herebeimages’)

This will add the DIPimage toolbox and low-level DIPlib interface to the beginning of the
path, initialize DIPlib and set the default directory where DIPimage will look for images.

Optionally, you can add these directories to your path too:
/something/dip/common/dipimage/demos
/something/dip/common/dipimage/aliases

The first one contains a few demos that show how to use different features of the toolbox. The
second one is only for backwards-compatability, and contains aliases for functions that have
changed their names since the first release. You will need these aliases if you have written
M-files that use any of the functions that have changed names. However, we recommend you
change your functions to use the new names.

2.3 MacOS X Installation

For installation of DIPimage on the MacOS X platform you should follow the UNIX in-
structions in Section 2.2, with the following modification: on Mac the environment vari-
able to set is called DYLD LIBRARY PATH, and the path to set it to (or add to it) is
/something/dip/Darwin/lib/. It is necessary to pass this environment variable to Matlab
when it is started. There are various ways of doing this:

6 Chapter 2. Installing DIPimage

• In a Terminal window, type echo $0 to find out what shell you use. It should either
reply with “bash” or “tcsh”. If using bash, type

DYLD_LIBRARY_PATH=/something/dip/Darwin/lib/
export DYLD_LIBRARY_PATH

If using tcsh, the command to use is

setenv DYLD_LIBRARY_PATH /something/dip/Darwin/lib/

You must now start Matlab from this same shell by typing

/Applications/MATLAB_R2010b.app/bin/matlab

(substitute your actual path to the Matlab executable). Note that you need to do
this every time you want to start Matlab. You can add the path definition to your
~/.profile file (bash) or ~/.cshrc file (tcsh), but you will always need to start Matlab
through the shell.

• Define the environment variable in the file ~/.MacOSX/environment.plist as described
in Apple’s technical documentation:
http://developer.apple.com/qa/qa2001/qa1067.html
This should allow you to start Matlab by clicking the application’s icon. The setting
is a per-user setting, so each user wanting to use DIPimage on that computer needs to
edit his or her own file.

• Create a file ~/.launchd.conf with the following line (or add the following line if you
already have this file):

setenv DYLD_LIBRARY_PATH /something/dip/Darwin/lib/

This is a plain text file, and it is hidden, so you need to create it through the Terminal
or an application that allows creating and editing hidden files. This again is a per-user
setting. You need to log out for the changes to take effect. As in the solution above,
this should allow you to start Matlab by clicking the program icon.

• Same as the above, but in a file called /etc/launchd.conf. This makes it into a
system-wide setting, available to all users. You need to reboot for the changes to take
effect.

• If all the solutions above fail, you can always make a copy of all the
.dylib files in /something/dip/Darwin/lib/ in Matlab’s program directory:
/Applications/MATLAB R2010b.app/bin/. This is, however, not recommended be-
cause of problems that could happen when upgrading to a newer version of DIPimage
or Matlab.

http://developer.apple.com/qa/qa2001/qa1067.html

Chapter 3

Getting Started

To show you around DIPimage, we will work through a simple image-processing application.
Not all steps will be written out explicitly, since it is our goal to make you understand what
is going on, and not to have you copy some commands and stare in amazement at the result.

The goal of this application is to do some measurements on an image of some rice grains,
then analyze these measurements.

3.1 Starting the GUI

Type the following command at the Matlab prompt:

dipimage

This should start the DIPimage GUI. A new window appears to the top-left of the screen,
which contains a menu bar. Spend some time exploring the menus. When you choose one of
the options, the area beneath the menu bar should change into a dialog box that allows you
to enter the parameters for the filter you have chosen. See also Sections 7.1 and 8.2 for more
info on the GUI.

3.2 Loading and Displaying an Image

Before you can use these functions, you first need to load some image. The first menu is
called “File I/O”, and its first item “Read image (readim)”. Select it. Press the “Browse”
button, and choose the file rice.tif. Change the name for the output variable from ans to
a, then press the “Execute” button. Two things should happen:

1. The image ‘rice’ is loaded into the variable a, and displayed to some figure window:

7

8 Chapter 3. Getting Started

2. The following lines (or something very similar) appear in the command window:
>> a = readim(’c:\matlab\toolbox\dipimage\images\rice.tif’,’’)
Displayed in figure 1

This is to show you that the same would have happened if you would have typed that command
directly yourself, without using the GUI. Try typing this command:

a = readim(’rice’)

The same image should be loaded into the same variable, and again displayed to some window.
Note that we left off the ’.tif’ ending of the filename. readim can find the file without you
having to specify the extension. We also didn’t use the second argument to the readim
function, since ’’ is the default value. Finally, by not specifying a path to the file, we asked
the function to look for it either in the current directory or in any of the directories specified
by the ImageFilePath setting (see Section 8.4).

To avoid having the image displayed in a window automatically, add a semicolon to the end
of the command:

a = readim(’rice’);

3.3 Pre-processing the Image

You will have noticed the heavy background shading in this image. If we try to segment it
directly, the results will be unsatisfactory (as you can try out later). Let’s do some background
correction. The idea is to use a low-pass filter that removes the objects while keeping the
slow change in the background. Choose “Filters” and “Gaussian filter”. Select a as the input
image, and choose a name for your background image (we use bg). Finally, choose a suitable
value for the filter parameter, such that the objects are removed and the background shading
is left. Try different settings until you are satisfied with the result.

Once we have the background image, we can subtract it from the original image. It is very
easy to do arithmetic with images in Matlab. Type

a = a - bg

The new image should be displayed to a figure window, but it looks very dark. This is
because the pixels have lower values now, some even have negative values. By default, images
are displayed by mapping the value 0 to black, and the value 255 to white. You can change

DIPimage User Manual 9

this by choosing a different mapping mode. Open the “Mappings” menu on the figure window,
and choose “Linear stretch” (try out the other modes too).

The “Actions” menu allows you to choose what the mouse should do on the figure window.
Select “Pixel testing”, and press the mouse button while pointing somewhere in the image
(keep the button down). The figure caption changes to show the coordinates of the mouse
in the image and the value of the pixel at those coordinates. Try moving the mouse while
holding the button down. Another option on the “Actions” menu (“Zoom”) is used to zoom
in on an image. Try it out too. See Chapter 6 for more information on the figure windows.

The next step is to segment the image. We need to find some threshold that distinguishes the
grains of rice from the background. To find it, we can examine the histogram of the image.
Choose “Histogram” on the “Statistics” menu, or type

diphist(a,[])

The graph shows two peaks, one for the background, one for the objects. Find a value
in between for the threshold. To do the segmentation, compare all pixel values with the
threshold, which can be done in this way:

b = a > 20

This results in a binary image (logical image, containing values of “true” and “false”, coded
as 1 and 0), with ones at the pixels that belong to the objects. This image is displayed in
red and black to emphasize that it is a binary image rather than a grey-value image with
only two different grey values. Binary images have different characteristics than grey-value
images, for example they can be used to index into other images, just like Matlab’s logical
arrays.

The final step is to remove the grains that do not completely lie inside the image. We can
do this using a binary operation. Find and execute the “Remove edge objects” function in
the menu system. What it does is the same as the bpropagation function, with an empty
image as a seed image, and the edge condition set to 1. To create an empty seed image use
the newim function. Thus, these two commands are equivalent:
b = b - bpropagation(newim(b,’bin’),b,0,2,1)
b = brmedgeobjs(b,2)

10 Chapter 3. Getting Started

3.4 Measuring

Before we can start measuring, it is convenient to have a label image. Select the “Label
objects” item on the “Segmentation” menu, and select the new object image as the input.
The result (name the image lab) is a labeled image where the pixels belonging to each object
have a different value. In the window of the new image, select the “Labels” mapping. Now
each grey value gets a different color. Examine the pixel values to see how the objects are
labeled.

Now do the measuring. We will measure the object area in pixels (’size’) and the Feret
diameters (’feret’), which are the largest and smallest diameters, and the diameter perpen-
dicular to the smallest diameter.

data = measure(lab,[],{’size’,’feret’});

measure returns an object of type dip measurement, which is explained further in Chapter 5.
Leaving the semi-colon off the previous command, the complete measurement results are dis-
played at the command prompt. Furthermore, data(1) is the measurement results for object
with label 1, data.feret is an array containing all the Feret diameters, and data(1).feret
are the Feret diameters for object number 1.

To extract the measurements done on all objects and put them in an array, type
feret = data.feret;
sz = data.size;

This gives us arrays with the measured data. Matlab allows all kinds of statistics and
analysis on these arrays. For example, mean(sz) gives the mean grain area.

We will use scatter to find some correlation between the diameters and the area of the
grains. Let’s start by plotting the length of the grains against their width:

figure; scatter(feret(1,:),feret(2,:))

Apparently, they are mostly unrelated. Let’s try a relation between the length and the surface
area:

scatter(feret(1,:),sz)

These appear to be more related, but, of course, the area also depends on the width of the
grains. If we assume that the grains are elliptic, we know that the area is 1

4πd1d2. Let’s plot

DIPimage User Manual 11

the calculated area against the measured area:

scatter(sz,pi*feret(1,:).*feret(2,:)/4)

Wow! That is a linear relation. We can add a line along the diagonal to see how much the
ratio differs from 1 (the other commands are to make the figure look prettier):
hold on , plot([180,360],[180,360],’k--’)
axis equal , box on
xlabel(’object area (pixels^2)’)
ylabel(’\pi{\cdot}a{\cdot}b (pixels^2)’)

The actual slope can be computed by:

f = sz’\calc’

(this is the lest-squares solution to the linear equation sz’*f = calc’; the apostrophes trans-
pose the vectors to create column vectors).

3.5 Where to Go from Here

If you are new to Matlab, it would be a good idea to read the “Getting Started with
Matlab” manual. If you are new to image processing, you can read “The Fundamentals of
Image Processing”, an online image-processing course, which can be found at:
ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf.

Before you start using this toolbox, we recommend that you read Chapter 4 (at least Sec-
tion 4.11). It contains very important information on the dip image object and its usage.
Since it is not the same as a regular Matlab array, it can be a bit confusing at first. ‘

ftp://ftp.tudelft.nl/pub/DIPimage/docs/FIP2.3.pdf

Chapter 4

The dip image Object

Images used by this toolbox are encapsulated in an object called dip image. Objects of this
type are unlike regular Matlab arrays in some ways, but behave similarly most of the time.
This chapter explains the usage of these objects.

4.1 Creating a dip image Object

To create a dip image object, the function dip image must be used. It converts any numeric
array into an image object. The optional second argument indicates the desired data type
for the image. The pixel data will be converted to this type if possible, or else an error will
be generated (for example, it is illegal to convert complex data to a real type, since there are
many ways this can be accomplished; it is necessary to do this explicitly). The valid data
types are listed in Table 4.1. This table also lists some alternative names that are mapped to
the names on the left; these are just to make specifying the data type easier.1

For example,

a = dip_image(a,’sfloat’);

will convert the data in a to single (4-byte) floats before creating the dip image object.
The variable a now behaves somewhat differently than you might be used to. The following
sections explain its behavior.

To convert a dip image object back to a Matlab array use the function dip array. It simply
returns the data array stored inside the dip image object. The functions double, single,
uint8, etc. convert the dip image object to a Matlab array of the specified class.

There are also some commands to create an image from scratch. newim is equivalent to the
zeros function, but returns a dip image object.

a = newim(256,256);

creates an image with 256x256 pixels set to zero. An additional parameter (as in Table 4.1)
can be used to specify the data type of the new image. The default is ’sfloat’. If b is an
object of type dip image, then

a = newim(b);

creates an image of the same size (this is the same as newim(size(b))). The functions xx,
yy, zz, rr and phiphi all create an image containing the coordinates of its pixels, and can
be used in formulas that need them. For example, rr(256,256)<64 creates a binary image

1Note that these are the names of some additional DIPlib data types not used under Matlab, the names
Matlab uses for the data types, and some generalizations of the other names.

12

DIPimage User Manual 13

Table 4.1: Valid data types for the dip image object.
Name Description Other allowed names
bin binary (in 8-bit integer) bin8, bin16, bin32
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer uint
sint8 8-bit signed integer int8
sint16 16-bit signed integer int16
sint32 32-bit signed integer int, int32
sfloat single precision float float, single
dfloat double precision float double
scomplex single precision complex
dcomplex double precision complex complex

with a disk of radius 64. The expression

a = (yy(’corner’))*sin((xx(’corner’))^2/300)

generates a nice test pattern with increasing frequency along the x-axis, and increasing am-
plitude along the y-axis. All these functions have 256x256 pixels as the default output size,
and allow as a parameter either the size of an image, or an image whose size is to be copied.
For example, a*xx(a) is an image multiplied by its x-coordinates.

4.2 Displaying dip image Objects

When a Matlab command does not end with a semicolon, the display method is called for the
resulting values, if any. This method defaults to calling the disp method, which displays all
the values in matrices. For the dip image objects, the display method has been overloaded to
call dipshow instead; dipshow displays the image in a figure window (see Section 7.2 for more
information on this function). Before display, dipshow first calls squeeze (see Sections 4.4
and 4.5), meaning that a 4x1x6 image will be displayed as if it were a 4x6 image.

The disp method shows only the image size and data type instead. If you want display
to call disp instead of dipshow, you can change the ’DisplayToFigure’ preference using
dipsetpref (see Sections 7.8 and 8.4).

For images that cannot be displayed by dipshow, (e.g. zero-dimensional and empty images,
image arrays, etc.), display always calls disp.

4.3 Operations on dip image Objects

All mathematical operations have been overloaded for the dip image object. The matrix
multiplication (*), which is meaningless on images, does a pixel-by-pixel multiplication, just
as the array multiplication (.*). The same applies to the other matrix operations. Relational
operations return binary images. Binary operations on non-binary images treat any non-zero
value in those images as true and zero as false. For example, to do a threshold we do not

14 Chapter 4. The dip image Object

Table 4.2: Arithmetic functions defined for objects of type dip image(image in, image out).
abs acos and, & angle asin atan
atan2 besselj ceil complex conj cos
erf exp fix floor hypot imag
log log10 log2 mod not, ~ or, |
phase pow10 pow2 real round sign
sin sqrt tan xor - +
* .* ./ / ^ .^
== ~= > >= < <=

Table 4.3: Arithmetic functions defined for objects of type dip image (image in, scalar out).
all any max mean median min
percentile prod std sum var

need a special function, since we have the relational operators:

b = a > 100;

A double threshold would be (note Matlab’s operator precedence):

b = a > 50 & a < 200;

A note is required on the data types of the resulting images. The “higher” data type always
determines this result, but we have chosen never to return an integer type after any arithmetic
operation. Thus, adding two integer images will result in a 4-byte floating-point image; an
8-byte floating-point (double) image is returned only if any of the two inputs is double.

Many of the arithmetic functions have also been defined for objects of type dip image (see
Tables 4.2 and 4.3 for a complete listing). The basic difference between these and their
Matlab counterpart is that they work on the image as a whole, instead of on a per-column
basis. For example, the function sum returns a row vector with the sum over the columns when
applied to a numeric matrix, but returns a single number when applied to an image. Besides
these, there are some other functions that are only defined for objects of type dip image.
See Section 4.10 to learn about these functions. That section also lists some functions that
behave differently than usual when applied to images.

4.4 Dimensions

Matlab arrays have at least 2 dimensions. This is not true for an image in a dip image
object, which can also have 0 or 1 dimension. That is, for images there is an explicit distinction
between a 2D image of size 256 by 1 pixels, and a 1D image of size 256. Even though both
images have the same number of pixels and their Matlab array representation is identical,
these two images behave differently in many aspects. For example, size will return two
numbers for the first image, but only one for the second; similarly, it will return an empty
array for a 0D image (whereas the corresponding Matlab matrix has a size of [1,1]). Use
the function ndims to obtain the number of dimensions in an image.

The 2D image in this example has a singleton dimension. A singleton dimension is any

DIPimage User Manual 15

Table 4.4: Dimension manipulation functions.
cat circshift expanddim flipdim fliplr flipud
permute repmat reshape rot90 shiftdim squeeze

dimension of size 1. In Matlab arrays, trailing singleton dimensions are removed if the array
has more than two dimensions. That is, an array of size 4x1x6x1 is silently converted to an
array of size 4x1x6. This never happens with dip image objects.

As in Matlab, operations between two images require that both images have the same
number of dimensions, as well as the same size. There is only one exception to this rule: it
is possible to do arithmetic operations between two images with different number of trailing
singleton dimensions (e.g. between two images with sizes 4x6x1 and 4x6).

Functions used in Matlab to manipulate dimensions have also been overloaded to do the
same thing with images. They are listed in Table 4.4. The function expanddim listed in this
table adds trailing singleton dimensions, and hence does not exist for Matlab arrays.

4.5 Indexing Pixels

In image processing, it is conventional to index images starting at (0,0) in the upper-right
corner, and have the first index (usually x), index into the image horizontally. Unfortunately,
Matlab is based on matrices, which are indexed starting at one, and indicating the row
number first. By encapsulating images in an object, we were allowed to redefine the indexing.
We chose not to follow Matlab’s default indexing method. This might be confusing at first,
and special care must be taken to check the class of a variable before indexing.

dip image objects are indexed from 0 to end in each dimension, the first being the horizontal.
The size function also returns the image width as the first number in the array. Any portion
of a dip image object, when extracted, is still a dip image object, and of the same dimen-
sionality, even if it is just a single pixel. Thus, if a is a 3D dip image object, a(0,0,0) is also
a 3D dip image object, even though it only has a single pixel. To get a pixel value as a Mat-
lab array, use double(a(0,0,0)). To remove these singleton dimensions use squeeze. For
example, a(:,:,2) is a 3D image with a singleton dimensions, whereas squeeze(a(:,:,2))
is a 2D image.

Any numeric type can be assigned into a dip image object, without changing the image data
type (that is, the element assigned into the image is converted to the image data type). For
example,

b(:,0) = 0;

sets the top row of the image in b to 0. Note that indexing expressions can become as
complicated as you like. For example, to sub-sample the image by a factor 3, we could write

b = b(1:3:end,1:3:end);

Instead of using full indexing (indexing each dimension separately), it is also possible to index
using a single (linear) index. Following Matlab’s default behavior, the indices increase in
the vertical direction, however they start at 0 for dip image objects (i = y+ x · height). The
output is always a 1D image.

16 Chapter 4. The dip image Object

Finally, it is also possible to index using a mask image. Any binary image (or logical array)
can be used as mask, but it must be of the same size as the image into which is being indexed.
For example,

a(m) = 0;

sets all pixels in a, where m is one, to zero. A very common expression is of the form

a(a<0) = 0;

(which sets all negative pixels to zero).

Note that the expression a(m) above returns a one-dimensional image, with all pixels selected
by the mask. It is equivalent to a(find(m)), where find returns an array of indices where m
is one. This array is then used as a linear index into a.

4.6 Image Arrays

It is possible to join objects of type dip image in an array, and the resulting array is still of
type dip image. However, an array of type dip image is treated very differently throughout
the interface. To support this idea, the functions class and isa, when querying an array of
type dip image, report that the object is of type dip image array. The function isscalar
will only return true when the object contains a single (grey-value) image.

To create an array of images use the function newimar. It has two forms: in the first form,
specifying the array dimensions creates an array of empty images; in the second form, two or
more images are joined into an image array. These two examples show both forms:
A = newimar(3); % a 3-by-1 array of empty images
B = newimar(a,b,c); % a 3-by-1 array with images a, b and c

The images in an array do not need to be of the same size or type, since the dip image array
object is just a collection of independent objects of type dip image. Accessing any of those
images is possible by indexing through the curly braces ({}). Continuing the example above,
c = B{3};
A{1} = a;

Note that indexing into the array does follow the standard Matlab array indexing rules
(starting at 1, first index is row number). It is possible to combine both types of indexing,
but only in a fixed order, that is, the curly braces must come before the round braces:2

A{1}(0,0)

Most functions and operations do not work on objects of type dip image array, but the
functions imarfun and iterate allow operations to be performed on all images in an array.
See Section 4.10 for more information on these functions. The functions size, length, ndims
and end behave differently when their input is an array of images. In this case, they work
on the array itself, instead of on the images in it. Instead of using these functions, consider
using imsize and imarsize. The first one always returns the size of the image, even if it
is an image array, the second one always returns the size of the image array, even if it is
a 1x1 array. length(a) can be written as max(imsize(a)), and ndims can be written as
length(imsize(a)).

2This is a limitation of the Matlab parser.

DIPimage User Manual 17

Table 4.5: Arithmetic functions defined for tensor images.
cross curl det diag divergence dot
eig eig largest eye inner inv norm
outer pinv rotate svd trace -
+ .* * ./ .’ ’

Concatenation of images does not produce an image array, but a larger image. Furthermore,
concatenation of image arrays also produces a singe image, where the image arrays are first
concatenated to form an image. For example,

d = [A];

is the same3 as

d = [A{1},A{2},A{3}];

If all the images in the array are of the same dimensionality and size, the array can be treated
in a special way. We will call such an array a tensor image.

4.7 Tensor Images

A tensor image is a special kind of image array, in which all images are of the same dimen-
sionality and size. If this is the case, istensor returns non-zero (true). For these special
arrays, some arithmetic operations are defined: +, -, *, .* and ./. They are applied to the
arrays in the expected way (that is, tensor by tensor, not image by image).

The pixels of a tensor image can be indexed like a normal image, returning a new tensor
image. To get the array at a single pixel, use the double function on it. For example, say
A is a tensor image. Then A{1} is an image with the first tensor component as pixel values,
A(0,0) is a tensor image with a single pixel, and double(A(0,0)) is a Matlab array with
the tensor values at the first pixel. This indexing is not allowed on image arrays that are not
tensors.

Note that the functions size, length, ndims and end make no exception for tensor images,
and work on the array itself, not on the images in it. Thus, as mentioned in Section 4.6, use
the function imsize to obtain the size in pixels of a tensor image, and imarsize to obtain
the size of the tensor at each pixel.

Also note that a scalar image (with one component) is also a tensor image (istensor returns
true). The function isscalar returns true when there is only one tensor component. Addi-
tionally, the function isvector returns true if the tensor image has more than one component
and these are all along one dimension. Relevant similar functions are iscolumn, isrow and
ismatrix.

Functions defined specifically for tensor images are summarized in Table 4.5. See Section 4.10.

3Newer versions of Matlab simply ignore the brackets when there is only one value inside, so this statement
does not hold for all versions of Matlab.

18 Chapter 4. The dip image Object

4.8 Color Images

A color image is represented in a dip image object by a tensor image with some extra in-
formation on the color space in which the pixel values are to be interpreted. A color image
must have more than one channel, so the tensor image that represents it should have at least
two components. Use the colorspace function (see Section 4.10) to add this color space
information to a tensor image:

C = colorspace(A,’RGB’)

A color space is any string recognized by the system. Currently defined color spaces are
RGB, R’G’B’, XYZ, Yxy, L*a*b*, L*u*v*, CMY, CMYK, HCV and HSV. It is possible to
specify any other string as color space, but no conversion of pixel values can be made, since
the system wouldn’t know how. Images with a color space will be displayed by dipshow. If
the color space is recognized it will be converted to RGB for display.

To convert an image from one color space to another, use the colorspace function. Con-
verting to a color-space-less tensor image is done by specifying the empty string as a color
space. This action only changes the color space information, and does not change any pixel
values. Thus, to change from one color space to another without converting the pixel values
themselves, change first to a color-space-less tensor image, and then to the final color space.

The function joinchannels combines two or more images into a color image using the spec-
ified color space:

C = joinchannels(’RGB’,a,b,c)

All operations that are defined for tensor images can be applied to color images. In case
a dyadic operation is applied to two color images with different color spaces, no conversion
is done. Instead, the color space information is thrown away and both images are treated
as tensor images. An operation between a color image and a tensor image produces a color
image.

4.9 A Note on the end Method in Indexing

Because of limitations in the Matlab language, it is impossible to know, for the overloaded
end method, if it is being used inside curly or round braces (i.e. whether the last element of
the image array is requested, or the last pixel of the image is requested). The solution we
have adopted is to suppose image array indexing if the object being indexed is an array, or
pixel indexing otherwise (following the convention used for size, length and ndims). Thus,
end only works fine inside curly braces if there is more than one image in the object, and it
only works fine inside round braces if there is just one image in the object.

Since this is not an optimal solution, we suggest that you use end with care. end can be
substituted with imsize or imarsize in all cases. These two

a{end}, b(end,end)

are equivalent to

a{prod(imarsize(a))}, b(imsize(b,1)-1,imsize(b,2)-1)

DIPimage User Manual 19

4.10 Special Functions

There are some special functions defined only for dip image objects. Many have already
been mentioned in preceding sections, but we will summarize them here. We also list some
functions that are very different in usage from their Matlab equivalent.

cat

cat concatenates images into a larger image, just as the regular cat does with arrays. The
difference is that it concatenates any image array inputs into a scalar image before joining its
inputs. Thus, it always produces a scalar image (see Section 4.6).

class

Even though the object is of type dip image, class will return dip image array if there is
more than one image in the object. See Section 4.6.

colorspace

This function will add and retrieve color space information from a tensor image with two or
more components. It can also be used to change the color space of a color image, in which
case the pixel values will be recomputed. See Section 4.8 for more information on color spaces.

convhull

This overloaded function works differently from the Matlab one. The output is a binary
image containing the solid convex hull of the binary image input. convhull(a,’no’) returns
only the outer shell, (i.e. the volume is not filled in).

curl, divergence

curl calculates the rotation of a 2D or 3D vector image. divergence computes the divergence
of a vector image. Both methods have different input arguments from their base counterparts.

datatype

datatype extracts the data-type string from a dip image object. If the input is an image
array, it expects as many output parameters as images are in the array. The string returned
is a DIPlib data type name, not a Matlab class name (i.e. ’sfloat’, not ’single’); see
Table 4.1. To change the data type of an image, use the function dip image.

dip array

dip array extracts the data array from a dip image object. If the input is an image array, it
expects as many output parameters as images are in the array, and puts one array into each.
Alternatively, if only one output parameter is given, and the input is a tensor image, the
tensor components are catenated along a new dimension before the data array is extracted.
The data array is returned as-is unless a second input argument is used to specify a data
type.

double, single

20 Chapter 4. The dip image Object

These functions convert a scalar image (in an object of type dip image) to a Matlab array
of type double (Matlab’s default data type) or type single (single precision floating point).
They are equivalent to calling dip array with ’double’ or ’single’ as a second argument.

Also defined are uint8, uint16, uint32, int8, int16, int32 and logical.

eig

As opposed to the builtin eig function, this version only works on 2x2 or 3x3 symmetric
tensor images, such as the structure tensor, the Hessian, etc.

eig largest

This function computes the largest eigenvector for a square tensor image using the Power
method. An optional second output argument contains the corresponding eigenvalue.

The second argument in the call

v = eig_largest(a,sigma)

specifies the tensor smoothing that should be applied before calculating the eigenvector.

expanddim

expanddim(a,n) increases the dimensionality of the image a to n, by appending dimensions
of size 1.

find, findcoord

find works similarily to the base version, except it is not possible to obtain [I,J] indices as
output. The indices returned are always linear indices. An optional second output argument
receives the non-zero values. To obtain the coordinates of non-zero values, use findcoord
instead. It returns the coordinates of the pixels with non-zero values as a single array, with as
many columns as dimensions in the input image, and one row for every non-zero pixel. Note
that this matrix cannot be used directly to index an image.

gradient

The overloaded version of gradient returns a vector image, instead of multiple outputs. The
derivatives are computed using Gaussian derivatives.

imarfun

imarfun applies some other function on an array of images. It has two modes.

In the first mode, it produces a numeric array with the same size as the input image array,
where each number is some measure for each image. The possibilities are listed in Table 4.6.
This example replaces the image a for the empty images in the array A:
I = imarfun(’isempty’,A);
A{find(I)} = a;

The second mode applies an operation to all images in the array, which must all be of the
same size (istensor returns true), producing an image with the same size as the images in
the array. The possibilities are listed in Table 4.7. For example, to get the sum of all images

DIPimage User Manual 21

Table 4.6: Options for imarfun in its first form. These operations compute a single value for
each image in the array.

Option Meaning
’isempty’ true for empty image
’islogical’ true for binary image
’isreal’ true for non-complex image
’ndims’ number of dimensions of image
’prodofsize’ number of pixels in image
’max’ maximum pixel value in image
’mean’ mean pixel value in image
’median’ median pixel value in image
’min’ minimum pixel value in image
’std’ standard deviation of pixels in image
’sum’ sum of pixels in image

Table 4.7: Options for imarfun in its second form. These operations combine all images into
a new image.

Option Meaning
’imsum’ sum of all images
’improd’ product of all images
’imor’ true if any pixel is non-zero
’imand’ true if all pixels are non-zero
’immax’ maximum pixels over all images
’immin’ minimum pixels over all images
’imeq’ true if pixel is equal in all images
’imlargest’ index of first image with largest pixel value
’imsmallest’ index of first image with smallest pixel value

in the array A, we can do either of these:
res = imarfun(’imsum’,A);
res = A{1}+A{2}+A{3}+...+A{end};

imarsize, imsize, size

The function size works differently if the input is of type dip image or dip image array.
To solve the problems that yields, use the functions imsize to obtain the size of an image
(including tensor images or color images), and imarsize to obtain the size of an image array,
even if the image is scalar.

imarsize, just like the function size when applied to an array, always returns at least two
values. imsize, on the other hand, can return fewer values.

ind2sub, sub2ind

These functions have the same function as their base counterparts, but instead of using
subscripts specified with one array for each dimension, they take and return a single coordinate

22 Chapter 4. The dip image Object

array, compatible to that returned by findcoord. Also, instead of a size array, they take an
image as input.

inner, outer

These calculate the inner and outer product of two tensor images. outer is only defined for
tensors with three components. They are equivalent to dot and cross, respectively.

isa

isa(a,’dip image’) returns true only if there’s a single image in the object a.
isa(a,’dip image array’) returns true only if there’s multiple images in the object.
isa(a,class(a)) always returns true. See Section 4.6.

iscolor

iscolor returns true if the input image is a tensor image and contains color space information
(see Section 4.8).

isscalar

isscalar returns true if the argument is a dip image, not a dip image array. That is, the
argument is a single, scalar, grey-value image.

istensor

istensor returns true if all images in an image array are of the same size. A tensor image is
treated differently than a regular image array (see Section 4.7). Note that a scalar image is
also a tensor image.

Also defined are iscolumn, ismatrix, isrow and isvector. These give additional informa-
tion about the shape of the tensor.

iterate

iterate loops through each image in the image arrays it gets as input, and calls the function
fun with the given parameters. This is a very versatile function, and allows a combination of
image arrays, single images and other objects as input. The only requirement is that all the
image arrays are of the same size.

For example, let A and B be N-by-M dip image array objects. Then

C = iterate(’max’,A,B);

is the same as
C = newimar(N,M);
for ii=1:N*M, C{ii} = max(A{ii},B{ii}); end

Use the function iterate to apply filters to color images.

length, ndims

The functions length and ndims, much like size, work differently on scalar images and on
tensor or color images. If the image is scalar, they work on the image itself, meaning that

DIPimage User Manual 23

ndims returns the dimensionality of the image and length returns the maximum size of the
image. However, if the input is a tensor or a color image, which are implemented as image
arrays, these functions work on the array rather than the image. So now ndims returns the
dimensionality of the tensor (or just 2 for normal color images), and length returns the
maximum tensor size (or the number of channels in the color image).

max, min

These functions have two different forms.

In the first form, they return the global maximum/minimum in the image and, optionally, its
position:

[value,pos] = max(a,m);

The second input argument is a mask image, for ROI processing (this must be a binary image
or logical array). It is also possible to process only a specified set of dimensions. For example,
assuming a is 3D, this command returns a 3D image with two singleton dimensions, where
each pixel i contains the maximum over a(i,:,:):

value = max(a,m,[2,3]);

If no mask is required, pass [] for the mask argument. A second output argument gives the
location of the maximum, but only can be given if the projection is along one dimension:

[value,pos] = max(a,m,1);

Here, a(pos(0,i,j),i,j) == value(0,i,j).

The second form takes two images and returns an image with the supremum of the two:

c = max(a,b);

mean, std, var

These return the mean intensity, standard deviation or variance of the pixel values in an
image. It is possible to add a mask:

value = mean(a,m);

As in max, it is possible to specify a set of dimensions that are to be processed:

value = mean(a,m,[2,3]);

If no mask is required, pass [] for the mask argument.

median, percentile

percentile returns the p percentile of all pixels in the image a, and, optionally, its position:

[value,pos] = percentile(a,p);

Note that percentile(b,50) is exactly the same as median(b), percentile(b,0) is a silly
way of computing min(b), and percentile(b,100) is a silly way of performing max(b).

Like max and min, these two function also allow specifying a set of dimensions that are to be
processed, and a mask image m for ROI processing:
[value,pos] = median (a,m,[2,3]);
[value,pos] = percentile (a,p,m,[2,3]);

24 Chapter 4. The dip image Object

numel

The function numel always returns 1. To obtain the number of pixels in an image, use
prod(imsize(a)). To obtain the number of tensor elements, or the number of images in an
image array, use prod(imarsize(a)).

phase

phase is defined the same as angle, and is provided because it might be easier to remember
for some users. It returns the angle of the complex values in an image.

pow10

This function was added just to complete Matlab’s collection of pow2, log2, and log10.

prod, sum

These methods return the product or sum of all pixel values in an image. Arguments are
identical to mean and the like.

rot90

This function works on images of any dimensionality, not only 2D images. However, the
rotations always occur in the x-y plane.

rotate

The overloaded method rotate has nothing to with Matlab’s rotate. Applied to a 3D-
vector image, it rotates the vectors around an axis given by a second vector image or vector.

4.11 Review of the Differences Between a dip image and a Matlab
Array

As we have seen, objects of type dip image have some differences with respect of regular
Matlab arrays. The main difference is in indexing. We start counting pixels from 0, and the
first index counts from left to right. This ordering is also used by functions such as size, in
which the first number is the image width and the second one the height. Finally, ndims can
return 0 or 1, which it never does for Matlab arrays, and size can return an empty array
or a scalar, which it never does for Matlab arrays. The reason is that zero-dimensional and
one-dimensional images are allowed, and are not seen as a special case of two-dimensional
images. Furthermore, singleton dimensions at the end are not ignored.

When a Matlab command results in an object of type dip image, and it is not ended with a
semicolon, the image is displayed to a figure window, instead of having its pixel values shown
in the command window. This is the default behavior, but can be overridden.

There are no array operators for scalar images, all operators work on a pixel-by-pixel basis.
All functions that work on the columns of numeric arrays work on the image as a whole when
applied to a dip image object.

A collection of images can be stored in an object of type dip image. For the purposes of

DIPimage User Manual 25

the toolbox, such an object is called a dip image array. Syntax for indexing into such a
collection is similar to that used to index into a cell array (which is a collection of any
type of arrays), but should not be confused for one. A special type of image array is used
as a tensor image, for which a whole range of functions is available. Color images are tensor
images with color space information.

Objects of type dip image cannot be used in functions of the MathWorks’ Image Processing
Toolbox. Although most of Matlab’s functions work on dip image objects, not every func-
tion will work as expected. Use the functions dip array, double or uint8 to convert the
image to a format recognizable by these functions.

Chapter 5

The dip measurement Object

The function measure (and the low-level dip measure function in DIPlib) returns the mea-
surement results in an object of type dip measurement. It contains all the measures done on
an image in a manageable way.

5.1 Extracting Measurement Data

The data in the dip measurement object can be accessed in a very simple way, but only for
reading, not writing (i.e. data manipulation is not allowed).

Indexing with parentheses is used to access the measurements belonging to one or more
objects. The index used must match the label ID of the object in the image, and the returned
value is an object of type dip measurement.

The dot operator is used to extract the values corresponding to a single measurement. The
array returned is of type double.

For example,

msr(11:15).size

will return a double array with five elements, being the sizes for objects number 11 through
15. Note that element 11 doesn’t need to be placed 11th in the list of measurements. If only
objects starting at 10 were measured, the above example is equivalent to

msr.size(2:6)

since msr.size returns a double array, whose second element would be the size of object
number 11.

The end method will return the last label ID in the object. double converts the data in the
object to a double array, loosing the names of the measurements and the label IDs.

5.2 Other Information on the dip measurement Object

Besides extracting the measured data, you might want to gain more knowledge on the object
you are dealing with (e.g. which measurements were taken and how many of them are there).
This section describes functions used for this purpose.

fieldnames returns the names of the measurements present in the object.

isempty returns true if there is no data in the object.

size returns the number of IDs as the first dimension, and the number of measurements as
the second. Note that the number of measurements returned by size does not need to be

26

DIPimage User Manual 27

equal to the number of names returned by fieldnames. If a measurement contains more
than one value for each object, each of these is taken as a measurement. Thus, the number
of measurements is the number of scalar values assigned to each object. size(double(msr))
returns the same value as size(msr).

5.3 Combining Measurement Data

To join measurements produced by different calls to measure, use the default Matlab syntax.
However, there is the limitation that, when joining measurements, they must contain either
the same measurements on different objects, or different measurements on the same objects.
Horizontal and vertical catenations produce different effects.

[A,B] joins two measurement objects with the same label IDs, but different measurements.
If some measurements are repeated, or if the label IDs don’t match, an error is generated.

[A;B] joins two measurement objects with the same measurements, on different label IDs. If
some IDs are repeated, or if the measurements don’t match, an error is generated.

In some cases, objects in different images have the same labels. These need to be changed
before catenation is possible. This is done by the following syntax:

msr.id = 51:73;

The length of the array assigned to the IDs must have the same number of elements as the
measurement object.

Similarly, it is possible to measure the same thing on different images of the same objects. For
example, one might measure the average grey value on all three channels of an RGB image.
To join these measurements into a single object, it is possible to add a prefix to the names of
the measurements:
msr1.prefix = ’red_’;
msr2.prefix = ’green_’;
msr3.prefix = ’blue_’;
msr = [msr1,msr2,msr3];

Note that this prefix cannot be changed, only added to. For example,
msr.prefix = ’A’;
msr.prefix = ’B’;

causes the measurements in msr to have names like ’BAsize’.

5.4 Adding Measurement Data

Furthermore, it is possible to add your own measurements to a dip measurement object:

msr.temperature = mydata;

You can name them whatever you want, except “id” or “prefix”, since that would invoke the
syntaxes explained previously. The array mydata in the example above has to be an array
with the same number of columns as there are labels in the dip measurement object.

The function rmfield deletes a measurement from the object.

28 Chapter 5. The dip measurement Object

5.5 Converting a dip measurement Object to a dataset Object

The dip measurement object provides an overloaded version of the dataset function, which
will convert the measurement object into a PRTOOLS data set. An optional second argument
allows giving each object a class ID:

ds = dataset(msr,[1,1,1,2,2,3,2,3,3,2,1])

For more information on the PRTOOLS pattern recognition toolbox, go to
http://www.prtools.org/.

5.6 Creating a dip measurement Object with Your Own Data

To create an object of type dip measurement, use the dip measurement function. Its syntax
is:

msr = dip_measurement(id,’msrname1’,msr1,’msrname2’,msr2,...)

where id is a vector containing the object IDs, and ’msrname1’ and msr1 are the name
and results of a measurement. The number of columns in msr1 should match the number of
elements in id, as each of the columns represents the result of a measurement on a single
object.

If the name of a measurement is not given, ’dataX’ is assumed, where the ‘X’ is the ordinal
number of the measurement. If id is not given, 1:N is assumed. Note that the only way it is
possible to recognize whether id is missing is if the first argument is a string.

5.7 Backwards Compatibility

The dip measurement object is new to version 1.1 of the toolbox. However, it has been
implemented in such a way that most old code doesn’t break. The structure that used to be
returned by measure in earlier versions can still be obtained with the struct function:

oldmsr = struct(msr);

The dip measurement constructor can be used to convert this structure back to an object.
Converting to a structure is the only way of manipulating the measurement data.

http://www.prtools.org/

Chapter 6

Figure Windows

The display is a very important part of any image-processing package. dip image objects
containing scalar or color images with 1 to 4 dimensions are displayed to Matlab’s figure
windows. These windows are completely cleared beforehand, meaning that images never
share a window with each other or with other graphical elements. This chapter describes the
possible interactions with figure windows, how to link variables with them, and their placing
on the desktop.

6.1 The Figure Window Menus

The display for an image contains four menus: “File”, “Sizes”, “Mappings” and “Actions”.

The first menu contains a “Save display...” option that saves the display to a TIFF file. This
allows you, for example, to save an image with labels, or to zoom into a portion of an image
and only save that. It also contains a “Close” and a “Clear” item. On Windows machines,
there is a “Copy display” option. It does the same as “Save”, but writes the image as a
bitmap to the clipboard, so that it can be pasted into other applications.

“Sizes” contains options that call diptruesize, which causes the image to be displayed with
an aspect ratio of 1, and various different zoom factors (see Section 7.4). It also contains an
option that causes a the image to be stretched to fill the figure window. The last option on
this menu, “Default window size” resizes the window to some pre-defined size (which is 256
by 256 pixels, but you can change it using dipsetpref, see Sections 7.8 and 8.4).

“Mappings” contains different ways of mapping the data for display. These options correspond
to calls to dipmapping (see Section 7.3). The first section here contains stretching modes,
which correspond to the range parameter in dipshow (see Section 7.2); one of these options
is “Manual...”, which, through a dialog box, allows the user to select a custom range. The
second section, only available for grey-value images, selects a colormap. The options in the
first section will sometimes change the selection of the colormap. If the image being displayed
is complex, this menu allows choosing the complex to real mapping performed (magnitude,
phase, real or imaginary part). For 3D and 4D images you can select the orientation of the
slices shown (X-Y, X-Z, Y-Z, X-T, Y-T, Z-T), as well as decide whether the stretching mode
selected is to be computed on the whole volume (“Global stretch”) or only on the current
slice.

The “Actions” menu selects the actions that can be performed through the mouse. The
options “none”, “Pixel testing”, “Zoom”, “Looking glass” and “Pan” (which correspond to
the diptest, dipzoom, diplooking and dippan commands) are available to all image types.
The 3D/4D image display also contains an option to “Step through slices” (dipstep), and

29

30 Chapter 6. Figure Windows

the 2D grey-value image display contains an option for “Orientation testing” (diporien). See
Section 6.2 for more information on these modes, and Section 7.5 for the associated commands.
This menu also contains a command to enable or disable the keyboard functionality in the
window. See Section 6.3 for more information on this.

Finally, the “Actions” menu on 3D/4D images contains some more options:

• “Link displays” (diplink, see Section 7.6) allows the user to link a display with other
displays. When stepping through the slices of this image, or changing the orientation
of the slicing, the images in the other displays will be kept in sync. This can be used
to easily compare various 3D or 4D images.

• “Animate” (dipanimate) will step through all slices in sequence. Calling this function
from the command line allows the user to choose the speed of this animation.

• “Max projection” and “Sum projection” (dipprojection) open a new window with the
chosen type of projection, along the current visualization axis.

• “Isosurface plot” (dipisosurface) also opens a new window, showing an isosurface plot
of the image. This window contains some controls to modify the surface. You should
be aware that it takes a while to generate an isosurface. It is recommended to smooth
and down-sample an image before generating an isosurface plot. The isosurface plot is
only available for 3D displays.

6.2 Using the Mouse in Figure Windows

As discussed above, the “Actions” menu allows selecting a mode for the mouse to work
in. Depending on the dimensionality and type of the image, the modes are (the commands
between brackets can also be used to turn these modes on and off, see Section 7.5):

• “None”: The mouse does nothing.

• “Pixel testing” (diptest): The mouse is used to examine pixel values and location.

• “Orientation testing” (diporien): The mouse is used to examine local orientation.

• “Zoom” (dipzoom): The mouse is used to zoom the image in and out.

• “Looking glass” (diplooking): The mouse is used to enlarge a part of the image.

• “Pan” (dippan): The mouse is used to pan the image if it doesn’t fit in the window.

• “Step through slices” (dipstep): The mouse is used to step through the slices of a 3D
or 4D volume.

When diptest is turned on, depressing the left mouse button will cause the current cursor
position to be displayed in the title bar, together with the grey-value (or color values) of
the pixel at that location. It is possible to move the mouse while holding down the button.
Depressing the right mouse button does the same thing, but the cursor position becomes the
origin of the coordinate system. This mode allows for length measurements in images.

When diporien is first turned on, a dialog box asks for the orientation image to associate
to the currently displayed image. This dialog can also calculate that image for you, using
the function structuretensor. Depressing any mouse button over the image now converts
the cursor into a line, aligned with the local image orientation. Like in diptest, the title

DIPimage User Manual 31

bar changes to display the coordinates and local orientation. The only way of changing the
orientation image associated with this display is to set “Actions” to “None”, and then enable
diporien again. Displaying a new image in this display also removes the orientation image.

When dipzoom is turned on, the mouse can be used to zoom the image in and out:

• Clicking with the left mouse button zooms the image in (with a factor 2).

• Clicking with the right one will zoom the image out (with a factor 2).

• Double-clicking any mouse button will cause the image to be stretched to fill the figure
window.

• Dragging a rectangle around an area of interest will cause it to be zoomed-in on.

The aspect ratio is set to 1:1 when zooming in or out, except after double-clicking. See
Section 6.3 to learn how to zoom using the keyboard.

dippan enables the user to use the mouse to pan (move) the image if it is larger than the
window. Just press the left mouse button and move the mouse with the button down. It is
also possible to pan using the keyboard (see Section 6.3).

When dipstep is selected, it allows the user to click or drag the cursor over the image to
go back and fourth through the slices that make up the volume. Moving the mouse down
or to the right, while holding down the left button, displays higher slice numbers along the
first hidden dimension. Moving the mouse up or to the left displays lower slice numbers.
Alternatively, click with the left mouse button to go up, and with the right one to go down. If
the displayed image is 4D, dragging the mouse with the right button down moves the display
along the second hidden dimension. Section 6.3 explains how to do step through slices with
the keyboard.

6.3 Using the Keyboard in Figure Windows

When the keyboard is enabled for a display window, it can be used to step through the slices
of a 3D/4D image, zoom in and out, and pan the image. These functions are independent of
the chosen mode for the mouse under the “Actions” menu.

The keys N and P step to the next and previous slice, respectively, of a 3D image. Addition-
ally, you can type the number of a slice and press Enter to go to it. Note that slice numbers
start with 0. In case of a 4D image, N and P step through the first hidden dimension (Z),
whereas F and B step through the second hidden dimension (T).

The keys I and O are used to zoom in and out, respectively. The zoom factor is 2. When
zoomed in, use the following keys to pan the image and get to the area of interest: W for up,
S for down, A for left, and D for right. With Matlab 6 and newer, it is also possible to use
the arrow keys.

The Esc key disables the keyboard. This is useful under Windows, where displaying an image
causes its window to gain keyboard focus. You would have to click on the command window
to continue typing a new command. Instead, press Esc, which disables the keyboard for
the window and causes your keystrokes to be send to the command window. To enable the
keyboard again, use the menu item “Enable keyboard” under the “Actions” menu. With the

32 Chapter 6. Figure Windows

command

dipsetpref(’EnableKeyboard’,’off’)

you disable the keyboard by default, and will have to use the above mentioned menu item to
enable it. See Sections 7.8 and 8.4.

6.4 Linking Variables with Figure Windows

A variable name can be linked with the handle of a figure window, such that any image
stored in that variable will always be displayed in the same window. This is done through
the dipfig function (see Section 7.7). It is not possible to link a single variable with more
than one figure window, but it is possible to link many variables to the same figure window.
This system allows the user to create a series of figure windows that will be reused, instead
of having new windows created all the time. These links do not, however, promise that an
image displayed is actually up-to-date. Changing the contents of a variable does not change
the contents of a figure window. By not adding the semicolon at the end of commands, it is
possible to automatically update the figure windows (see Section 4.2).

A special name ’other’ is defined in dipfig, that is a substitute for all variables not explicitly
linked to a figure window. It allows the user to have a window for all possible images he can
create. ’other’ can be linked to a series of windows, which then will be used sequentially.

Closing a window does not destroy the links that were made for it. Since variable names are
linked to window handles, a window can be reopened to display the image with which it is
linked.

Note that many toolbox functions that require a figure window handle as input also accept a
variable name. Variable names linked with a figure window are considered aliases for a figure
window handle.

6.5 Setting the Position of Figure Windows

The position of a figure window can be changed by manipulating its ’Position’ property,
which is defined by an array with four values: left, bottom, width and height.

set(handle,’Position’,[left,bottom,width,heigth]);

The coordinates for figure windows start at the bottom-left corner of the screen, and are in
screen pixels by default. This can be changed to centimeters, inches and other units:

set(handle,’Units’,’points’);

See “Matlab Function Reference” for more information on figure window properties.

The dipfig function has an additional optional parameter, which can be used to set the
position of a figure window at the same time that it is created. This parameter comes at the
end of the parameter list, and is the same array used for the ’Position’ property:

dipfig(’a’,[400,600,256,256]);

The width and height values are those of the image that will fit in the window, and the
window itself is drawn around this area. These values are always in screen pixels.

DIPimage User Manual 33

If an image is larger or smaller than the size of the window, the window will be resized so that
the image fits exactly. That is, unless the ’TrueSize’ option is turned off (see Section 8.4),
in which case the window will not be resized, and the image will be stretched to fit. To have
your windows fixed on the desktop, disable the ’TrueSize’ option.

As with all other settings, the position of the figure windows cannot be saved from one session
to the next. Add the appropriate commands to your startup.m or dipinit.m files to have
the same settings across sessions (see Section 8.3).

Chapter 7

Toolbox Functions

7.1 The GUI: dipimage

The GUI is started with the dipimage command. It contains menus with all available image-
processing functions in the toolbox. After choosing any of these menu items, the GUI window
transforms itself into a dialog box so that you can enter the appropriate parameters. The
controls that allow entering images have a context-menu (obtained by right-clicking in them)
with the names of the images currently defined. It is possible to enter the name of a variable
containing an image or any valid Matlab statement that evaluates to image data. (The
same is true for other objects, like measurements or data-sets. Also, the window selection
control, which is a drop-down list, can be updated through its context-menu.) Pressing the
“Execute” button causes the function to be called. There is also a button to get help on the
particular function. The whole process is rather obvious and self-explanatory, and no further
words shall be wasted on it.

7.2 The dipshow Function

dipshow shows a dip image object, as an image, in a figure window (that is, as long as it is a
binary, grey-value or color image, and has between 1 and 4 dimensions). An optional second
argument indicates the display range required, and allows more flexibility than the options
in the “Display” menu. The general form for dipshow is:

dipshow(a,range,colmap)

where range is either a grey-value range that should be displayed, or one of ’log’ or
’base’. A range is a numeric array with two values: a lower and an upper limit. The
pixels with the same or a lower value than the lower limit will be mapped to black. The
pixels that are equal or larger than the upper limit will be mapped to white. All other values
are linearly spaced in between. The strings ’lin’ and ’all’ and the empty array are a
shortcut for [min(image),max(image)], and cause the image to be stretched linearly. The
string ’percentile’ is a shortcut for [percentile(image,5) percentile(image,95)], and
’angle’ and ’orientation’ are equivalent to [-pi,pi] and [-pi,pi]/2 respectively. The
default range is [0,255], which is used unless a range is given explicitly. colmap is a col-
ormap. It can either be ’grey’, ’periodic’, ’labels’ or an array with 3 columns such as
those returned by the Matlab functions hsv, cool, summer, etc. (see the help on colormap
for more information on this).

The strings ’angle’ and ’orientation’ imply ’periodic’ if no explicit colormap is given.
This colormap maps both the maximum and minimum value to the same color, so as to hide

34

DIPimage User Manual 35

a jump in angle or orientation fields. The string ’labels’ implies a range of [0,255], and
produces a colormap that gives each integer value a distinct color.

The string ’log’ causes the image to be stretched logarithmically. ’base’ is a linear stretch
that fixes the value 0 to a 50% grey value.

Examples:
dipshow(a,’lin’,summer(256))
dipshow(a,[0,180],’periodic’)

If the input argument is a color image, it will be converted to RGB for display.

The image is displayed in a figure window according to the name of the variable that contains
the image. Links can be made using the dipfig function (see Section 7.7). If the variable
name is not registered, a new figure window is opened for the image. To overrule this behavior,
it is possible to specify a figure handle in the parameter list of dipshow:

dipshow(handle,image,’lin’)

Finally, an optional argument allows you to overrule the default setting for the ’TrueSize’
option. By adding the string ’truesize’ at the end of the parameter list for dipshow, you can
make sure that diptruesize is actually called. The string ’notruesize’ does the reverse.

See Chapter 6 for more information on the figure windows used by dipshow.

7.3 Figure Window Support: dipmapping

The function dipmapping can be used to change the image-to-display mapping. All menu
items under the “Mappings” menu are equivalent to a call to dipmapping. In a single com-
mand, you can combine one setting for each of the four categories: range, colormap, complex-
to-real mapping, the slicing direction and the global stretching for 3D images.

dipmapping(h,range,colmap,torealstr,slicingstr,globalstr)

changes the mapping settings for the image in the figure window with handle h. It is not
necessary to provide all four values, and their order is irrelevant. range can be any value
as described for dipshow in Section 7.2: a two-value numeric array or a string. colmap can
contain any of the strings described for dipshow, but not a colormap. To specify a custom
colormap, use dipmapping(h,’colormap’,summer(256)). torealstr can be one of: ’abs’,
’real’, ’imag’ or ’phase’. slicingstr can be one of: ’xy’, ’xz’, ’yz’, ’xt’, ’yt’ or
’zt’. globalstr can be one of ’global’ or ’nonglobal’. If you don’t specify a figure
handle, the current figure will be used.

Additionally, you can specify a slice number. This is accomplished by adding two parameters:
the string ’slice’, and the slice number. These must be together and in that order, but
otherwise can be combined in any way with any of the other parameters. The same is true
for the ’colormap’ parameter.

7.4 Figure Window Support: diptruesize

The “Sizes” menu contains some options to call diptruesize (see Section 6.1). This function
causes an image to be displayed with an aspect ratio of 1:1, each pixel occupying one screen

36 Chapter 7. Toolbox Functions

pixel. An argument gives the zoom factor. For example, 200 would make the image twice as
large on the screen, but with the 1-to-1 aspect ratio:

diptruesize(200)

diptruesize(’off’) causes the image to fill the figure window, possibly loosing the aspect
ratio. diptruesize accepts a figure handle as an optional first argument. If you provide a
handle, you must also provide a zoom factor.

7.5 Figure Window Support: diptest, dipzoom, et al.

As explained in Section 6.1, the first section of items under the “Actions” menu correspond to
the diptest, diporien, dipzoom, diplooking, dippan and dipstep commands. We explain
here how to use the functions. The modes they activate are described in the section previously
referred to.

All five functions have the same syntax:

diptest on

enables the mode, and

diptest off

turns it off. diptest, by itself, toggles the state. The current window is the last one activated.
You can select a window either through some mouse action on that window, or by typing in
the Matlab command window:

figure(handle)

where handle is the handle of the figure window, which should be visible on the title bar. If
you know this handle, you can also directly use it as a parameter to diptest:

diptest(handle)

or

diptest(handle,’on’)

7.6 Figure Window Support: diplink

diplink is the command that corresponds to the “Link displays...” menu option for 3D/4D
images (see Section 6.1). It is used in much the same way as the functions in Section 7.5.
When turning on, it displays a dialog box that allows the user to select the windows with
which to link. Alternatively, it is possible to specify the figure windows with which to link
through the command line:

diplink(’a’,{’b’,’c’,’d’})

or

diplink(1,[2,10,6])

DIPimage User Manual 37

7.7 Creating, Linking and Clearing Figure Windows: dipfig and dipclf

The single most important thing that can be customized in the DIPimage environment is the
way that images are displayed to figure windows. It is possible to link a variable name with a
figure handle, such that that variable is always displayed in that same window. If a variable
is not linked to any window, a new one will be opened to display it. The command

dipfig a

opens a new figure window and links it to the variable named a. Whenever that variable (if
it contains an image) is displayed, it will be send to that window. If the window is closed, it
will be opened again to display the variable. It is possible to link more than one variable to
the same window, like in the next example (which uses the functional form):
h = dipfig(’a’)
dipfig(h,’b’)

Finally, there is a special variable name, ’other’, that creates a link for all variables not
explicitly linked to a window. It is possible to have many windows linked to this special
name, and they will be used alternately. Creating a window for ’other’ avoids the opening
of new windows for ‘unregistered’ variables.

To remove the links, type

dipfig -unlink

Unlinking only a specific variable is not implemented.

To clear all figure windows (for example at the beginning of a demo), use the function dipclf.
It doesn’t change the position or size of any window, but removes the images in them. dipclf
can also be used to clear selected windows by giving it an array with handles or a cell array
with names as an argument (in a cell array you can actually combine numeric handles and
variable names).

7.8 Toolbox Preferences: dipsetpref and dipgetpref

All toolbox preferences are stored in memory, and are only accessible through the dipsetpref
and dipgetpref functions. They are listed in Section 8.4.

v = dipgetpref(’name’);

retrieves the value of the named preference. Two special forms print all current preferences
and all factory settings to the command window:
dipgetpref
dipgetpref factory

Setting a preference is similar:

dipsetpref(’name’,value)

Furthermore, it is possible to set many preferences at once:

dipsetpref(’name1’,value1,’name2’,value2,’name3’,value3,...)

38 Chapter 7. Toolbox Functions

7.9 Interactive Tools: dipcrop, dipgetcoords, et al.

These are some tools that, using an image display, allow the user to select points or regions
in an image. dipgetcoords returns the coordinates of one or more points selected by clicking
on an image. dipcrop returns a rectangular portion of an image selected by dragging a
rectangle. dipprofile returns a 1D image interpolated along a path selected by the user
on the display. diproi returns a mask image (ROI stands for region of interest) created by
selecting the vertices of a polygon; it can only be used with 2D images.

dipgetimage retrieves the image from a display. Use it if you lost an image but can still see
it in its display.

dipstackinspect lets the user click on a 3D display, and shows a 1D plot of the hidden
dimension at that point. The tool will stay active until the right mouse button is clicked over
the image.

7.10 Other 3D Visualization Tools: dipanimate, dipisosurface,
dipprojection

These functions handle the callback for some visualization tools available on 3D or 4D displays.
dipanimate automatically steps through slices. Optional input arguments allow to set the
speed and whether to loop indefinitely or not. dipisosurface shows a 3D rendering of an
isosurface of a 3D image. dipprojection calculates and displays various types of projections.

7.11 Image Processing Functions

The largest part of the toolbox is made out of the image processing functions. Most of them
are listed in the menu system of the GUI, and all are listed by typing

help dipimage

The usage of each function can be retrieved through the help command or through the GUI.

7.12 Adding Functions to the GUI

To add a function to the GUI, it must:

• respond in certain ways to certain inputs, so that the GUI can query it for parameters,
and

• be on both the Matlab path and the DIPimage path.

The second requirement is the easiest. If you have your functions in a directory called
/myhome/mytools/, then this command accomplishes it:

dipaddpath(’/myhome/mytools’)

The first requirement is a bit more complicated. To add this functionality to your own
function, copy the code in Figure 7.1. It shows a complete skeleton for a function. The line
that is not written-out is the one that assigns a structure into paramlist. This structure is
the most complicated part of the function (Figure 7.2 shows an example), but allows both

DIPimage User Manual 39

function out = func_name(varargin)
% The next line defines the parameters your function requires
paramlist = struct(...);
% The next section causes this function to be integrated in
% the menu system
if nargin == 1

s = varargin{1};
if ischar(s) & strcmp(s,’DIP_GetParamList’)

out = paramlist;
return

end
end
% Below, add your own code
out = process_image(varargin);

Figure 7.1: Skeleton GUI function.

the automatic parsing of the input parameters and the drawing of the dialog box in the GUI.
Automatic parameter parsing is discussed in Section 7.13.

The parameter structure paramlist contains four values:

menu Name of the menu to place the function in (string).
display Name for the function in the menu (string).
inparams Structure array with input parameters.
outparams Structure array with output parameters.

The function will be added to the end of the menu specified (in alphabetical order). If you
want to change the order of the menu items, you will need to create a localdipmenus function
(see Section 8.2).

paramlist.inparams defines the input parameters, and contains the following fields for each
parameter:

name Variable’s name (string). Not used (for now).
description Description to show the user (string).
type Expected data type (string).
dim check Expected dimensionality or size.
range check Expected range.
required 1 or 0, to specify whether the default value is useful.
default Default value to use if the parameter is not given.

paramlist.outparams defines the output parameters, and contains the following fields for
each parameter:

name Variable’s name (string), the default output variable in the GUI.
description Description to show the user (string).
type Data type (string).
suppress Suppress output? (0 or 1, optional, defaults to 0)

40 Chapter 7. Toolbox Functions

inparams = struct(...
’name’,{’image_in’,’percentile’,’filterSize’,’filterShape’},...
’description’,{’Input image’,’Percentile’,’Size of filter’,...

’Shape of filter’},...
’type’,{’image’,’array’,’array’,’option’},...
’dim_check’,{[],0,1,0},...
’range_check’,{’scalar’,[0,100],’N+’,{’rectangular’, ’elliptic’,...

’diamond’,’parabolic’}},...
’required’,{1,0,0,0},...
’default’,{’ans’,50,7,’elliptic’}...

);
outparams = struct(...

’name’,{’image_out’},...
’description’,{’Output image’},...
’type’,{’image’},...
’suppress’,{0}...

);
paramlist = struct(...

’menu’,’Filters’,...
’display’,’Percentile Filter’,...
’inparams’,inparams,...
’outparams’,outparams...

);

Figure 7.2: Sample parameter structure (belongs to the function percf).

The parameter description depends on the parameter type. What each of dim check,
range check and default mean depends on the type. Also, each parameter type produces
different controls in the GUI. Recognized types are listed below. Please examine any of the
functions in the toolbox that put themselves on the menu to learn more about this structure.

’image’

An object of type dip image (or dip image array). Numeric arrays are converted to a
dip image. The GUI presents an edit box where you can type any expression. Furthermore,
a right-click in this edit box brings up a list with variables of class dip image defined in the
base workspace.

dim check and range check are used to specify the type of image expected. dim check
defines the allowed image dimensionalities through a two-element vector [m,n], where m is
the lowest dimensionality and n is the highest dimensionality allowed. The expressions 0 and
[] map to [0,Inf], meaning any dimensionality is OK. Any scalar m maps to [m,m], meaning
only images with m dimensions are allowed. For example, to limit your function to 2D and
3D images, use [2,3].

DIPimage User Manual 41

Table 7.1: Data type aliases used in the range check parameter for images.
Name maps to
’any’ ’complex’ + bin
’complex’ ’real’ + scomplex, dcomplex
’noncomplex’ ’real’ + bin
’real’ ’float’ + ’integer’
’int’ or ’integer’ ’signed’ + ’unsigned’
’float’ sfloat, dfloat
’sint’ or ’signed’ sint8, sint16, sint32
’uint’ or ’unsigned’ uint8, uint16, uint32

range check is a string or a cell array with strings that defines both the allowed data types
and the image type (scalar, color, tensor, etc.) Allowed are any combination of dip image
data types (see Table 4.1) as well as the data type aliases defined in Table 7.1, and one
of the following strings: ’scalar’ (requires isscalar to be true), ’tensor’ (istensor is
true, which also allows a scalar image), ’vector’ (isvector is true, which does not allow
a scalar image), ’color’ (iscolor is true) or ’array’ (any dip image or dip image array
object is OK). If none of this set is specified, ’tensor’ is assumed. If range check is
[], {’all’,’tensor’} is used. There is no way to control the length of the vector or the
dimensionality of the tensor, you will need to write code to check those sizes yourself.

default is a string to be evaluated in the base workspace (therefore, you can use any expres-
sion with names of variables in the base workspace). Typically you would use ’a’ or ’b’ as a
default value, and set required to 1. This way, the GUI shows the name of a variable possibly
containing an image, but at the command-line (assuming you use automatic parsing) this de-
fault value is never used. It is also possible to specify something like ’[1,1,1;1,1,1;1,1,1]’
as a default image (as does the function convolve).

’measurement’

An object of type dip measurement. This input is treated the same as one of type ’image’,
except that dim check and range check are not used; set them to [] to avoid problems if
these values become significant in the future.

’dataset’

An object of type dataset (from PRTOOLS). This input is treated the same as one of type
’image’, except that dim check and range check are not used; set them to [] to avoid
problems if these values become significant in the future.

’array’

Any Matlab array. This is a complicated type because of the flexibility when specifying
array size and data type.

dim check defines the allowed array sizes in one of two ways:

• by referring to an image parameter using a positive integer scalar, the dimensionality
of the image pointed to gives the length of the vector required as input here; or

42 Chapter 7. Toolbox Functions

• by directly giving an array size.

The first mode is useful when the array indicates e.g. a filter size (see gaussf) or a coordinate
in the image (see findlocalmax). In both these cases one value per image dimension is
required.

The second mode allows any array size, either fixed ([4,4] for a 3D transformation matrix)
or flexible ([-1,3] for an RGB color map on any length). The -1 indicates that the length
along that dimension is not tested for. The empty array [] indicates that an empty array is
required. An empty array is not very useful, of course, except that we allow the combination
of various size specifications using a cell array: {[],[1,3],[4,4]} indicates either an empty
array, a 3-element vector or a 4-by-4 matrix are allowed. It is possible to combine references to
image parameters and direct array sizes: {[],1} indicates either an empty array or a vector
with as many elements as dimensions are in the first input image.

0 is a shortcut for [1,1], a scalar value. -1 is a shortcut for {[],[1,-1]}, a row vector of
any length or an empty array.

When using automatic parameter parsing, if a scalar input is given it is extended to satisfy
the required array size. Also, a vector is transposed to match the template, but two- or
higher-dimensional arrays are not. If multiple array size options are given, the first one that
matches is the one used.

range check determines the valid range for the values in the array. It must be either an
array with two values (minimum and maximum valid values), an empty array (meaning
[-Inf Inf]), or one of a few strings that are defined for common ranges:

• Integer types: ’N+’ = [1 Inf]. ’N-’ = [-Inf -1]. ’N’ = [0 Inf], ’Z’ = [].

• Real types: ’R’ = []. ’R+’ = [0 Inf]. ’R-’ = [-Inf 0].

Note that if you specify a range by two values, it is considered real. If you require some
(finite) integer range, use the type ’option’.

If required is false, default is any array that satisfies the requirements of dim check and
range check. For positive dim check, provide a scalar as default value, since it is always
valid.

’measureid’

A measurement ID in a dip measurement object.

dim check is a positive integer that points to a parameter of type ’measurement’. The
GUI shows, in a drop-down list, all measurement IDs present in the referenced object. The
automatic parameter parsing makes sure the measurement ID given by the user exists in the
referenced object.

required should be 0, and dim check and default are ignored. The default is always the
first measurement in the dip measurement object (passing the empty string yields the default
as well).

’option’

A value (numerical or string) selected from a list. The GUI presents a drop-down list with
options to choose from.

DIPimage User Manual 43

range check is a cell array with possible options, for example:

• {1,2,3,4}
• {’rectangular’,’elliptic’,’parabolic’}

required should be 0. default is any one value from the list. dim check is ignored.

’optionarray’

A cell array (with numbers or strings) selected from a list. The GUI presents an edit box
with a button. Pressing the button brings up a dialog box that allows selecting one or more
items from a list.

range check is as in ’option’. required should be 0. default is a cell array with values
from the list, or a single value. dim check is 0 if an empty cell array is allowed as input, 1 if
at least one value is required.

’cellarray’

A cell array (with arbitrary cell content). dim check and range check are ignored. default
must be a cellarray.

’infile’

The name of an existing file (for input). The GUI presents an edit box and a button that,
when pressed, presents an “Open...” dialog box.

range check is a string containing the mask for the file name, dim check is ignored, and
default is a string with the default file name.

’outfile’

The name of a file (for output). The GUI presents an edit box and a button that, when
pressed, presents an “Save as...” dialog box. See the comments for ’infile’.

’indir’

The GUI presents an edit box and a button that, when pressed, presents an “Select a directory
...” dialog box. range check and dim check are ignored, default gives the default directory.

’handle’

The handle of a figure window created by dipshow. It is possible to enter a handle or the
name of a variable (the figure to which it is linked is used). The GUI shows a drop-down list
with the titles of all figure windows that fit the description.

range check is a cell array with strings that specify the type of figure window required. All
figure windows that satisfy any of the strings are valid. Examples are:

• {’1D’,’2D’,’3D’} : either two- or three-dimensional displays.

• {’Color’,’Grey’,’Binary’} : either color, grey-value or binary displays.

• {’1D Color’,’2D Grey’} : either 1D color or 2D grey-value displays.

44 Chapter 7. Toolbox Functions

% The next section handles all parameter parsing
try

[var1,var2,var3] = getparams(paramlist,varargin{:});
catch

if ~isempty(paramerror)
error(paramerror)

else
error(firsterr)

end
end
% Below, add your own code
image_out = process_image(var1,var2,var3);

Figure 7.3: Skeleton for a function that uses automatic parameter parsing.

An empty array means that any window created by dipshow is acceptable. Note that these
strings are not case-sensitive. It is, however, important that the order shown here is main-
tained. No window will satisfy the string ’Binary 2D’, for example, but ’2D Binary’ is
valid.

dim check and default are ignored. The default value is always gcf (the current figure).

’string’

Any string. dim check and range check are ignored. default must be a string.

’boolean’

The value 1 or 0. Also accepted are the strings ’yes’, ’no’, ’true’ and ’false’, as well as
only the first character of each. The GUI presents a drop-down box with the words “yes” and
“no”. The automatic parameter parsing, however, always returns either 1 or 0. dim check
and range check are ignored. default should be any of the accepted values.

7.13 Automatic Parameter Parsing

To use automatic parameter parsing (through the getparams function), you no longer (since
version 1.4.1) need to copy files from the dipimage/private/ directory into your own
private/ directory. The function getparams is directly available.

The code shown in Figure 7.3 needs to be inserted into your function (after the portion used
for the GUI functionality). As you can see, the same data structure paramlist is used for
automatic parameter parsing and for the GUI.

It is not necessary to use the function getparams. If you don’t, you will have a more flexible
parameter parsing, but if you do, you will need to write less code: parameters are guaranteed
to be of the chosen types and in the chosen intervals.

Chapter 8

Customizing the DIPimage Environment

8.1 Figure Windows

The single most important thing that can be customized in the DIPimage environment is the
way that images are displayed to figure windows. It is possible to link a variable name with a
figure handle, such that that variable is always displayed in that same window. If a variable
is not linked to any window, a new one will be opened to display it. The command dipfig
is used to create these links (see Section 7.7).

8.2 Graphical user Interface

The DIPimage toolbox contains a GUI with a menu system for easy calling of toolbox func-
tions. It is not necessary to use this GUI, but it is the easy way of finding the functions
defined in the toolbox (see Section 7.1).

All functions that appear on the menus are in the toolbox directory or on the DIPimage path.
If you want to add any functions to this menu system, read Section 7.12. If you want your
function to appear in a specific place in the menu system, you will have to create a function
called localdipmenus. It gives you the opportunity to edit the cell array menulist created
by dipmenus, which specifies in which menu each function should be placed. It also allows
you to provide a list of functions not to be put on the menus at all.

The cell array menulist has two columns. The left column gives the names of the menus,
the right column contains cell arrays with the function names and menu names that are to
be put under each menu. Any function not mentioned in this array will be put at the bottom
of the menu specified by the function itself, in alphabetical order. See the code for dipmenus
to see how it is defined.

The list of functions to be excluded overrides the menulist. Any function in this list will not
be queried when generating the menu system.

Figure 8.1 provides an example for a localdipmenus function. It adds a menu to the
menulist, and puts all AVI-related functions on the exclude list. Note the string ’-’ that
inserts a separator in the menu.

An alternative is to edit the dipmenus function. We do not recommend this because you will
be required to make the same changes each time you install a new version of DIPimage.

The DIPimage GUI will call the dipinit command when starting. It initializes the working
environment. See Section 8.3.

45

46 Chapter 8. Customizing the DIPimage Environment

function [menulist,excludelist] = localdipmenus(menulist)
I = size(menulist,1)+1;
menulist{I,1} = ’My Functions’;
menulist{I,2} = {’gaussf’,’unif’,’kuwahara’,’-’,’closing’,’opening’};
excludelist = {’readavi’,’writeavi’,’writedisplayavi’};

Figure 8.1: Sample localdipmenus function.

Another thing that can be customized in the GUI is whether the command it executes should
be printed to Matlab’s command window. This is useful for copying and pasting the com-
mand being executed to some script or function. It is on by default, and can be switched off
by typing

dipsetpref(’PutInCommandWindow’,’off’)

8.3 Initialization File

The DIPimage GUI will call the dipinit command when starting. It initializes the working
environment, setting up figure windows and the like. You can also call it yourself, to return
the windows to their starting positions. You can edit this file to suit your need (or you can
create a local copy, making sure that it sits on the Matlab path before the original one; this
is recommended in multi-user systems). Since it is a script, not a function, it can initialize
some variables if you like. It can also be used to position the DIPimage GUI to the place of
your liking:
set(0,’ShowHiddenHandles’,’on’)
h = findobj(’tag’,’DIPimage_Main_Window’);
set(h,’Position’,[500,600,500,100])
set(0,’ShowHiddenHandles’,’off’)

8.4 Other Settings

Other settings are available through the dipsetpref command (see Section 7.8). They are
listed below:

BoundaryCondition

Value: string

Default : ’symmetric’

Setting this value causes dip setboundary to be called. This causes the algorithm that
extends the image beyond its boundary to change, for all filter operations.

BringToFrontOnDisplay

Value: ’on’ or ’off’

DIPimage User Manual 47

Default : ’on’

This setting controls whether dipshow brings a window to the front when displaying a new
image, or updating an old one.

CommandFilePath

Value: string

Default : ’’

This setting stores the path used by the DIPimage GUI to find the functions that must be
added to the menu system. The DIPimage toolbox directory does not need to be in this path,
since it is always used. On UNIX and Linux systems, directories are separated by a colon
(:), on Windows systems by a semicolon (;).

ComplexMappingDisplay

Value: string

Default : ’x+iy’

This only affects display of complex images. When using the “Pixel testing” mode in the
image display window, the pixel value can be displayed as real and imaginary components
(’x+iy’), or as magnitude and phase components(’r/phi’).

ComputationLimit

Value: integer

Default : 64 ∗ 10242

This only affects operations done on dip image objects in Matlab (not operations that
involve DIPlib itself). Matlab can only compute (properly) using floating-point values, so
images of integer types are converted to either single or double to do the computation.
To avoid excessive memory usage, the images are chopped in blocks to do this conversion.
ComputationLimit sets the size of these blocks, in bytes. Versions of Matlab prior to 7.0
can only compute using double-precision floats, so images of type single are also processed
this way.

CurrentImageFileDir

Value: string

Default : ’’

This setting stores the directory last visited by the file selection dialog boxes of readim,
readcolorim, readroiim and writeim. It is used by these functions to open the file selection
dialog box in the directory you last used.

CurrentImageSaveDir

Value: string

Default : ’’

This setting stores the directory last visited by the file selection dialog box of the “Save

48 Chapter 8. Customizing the DIPimage Environment

display...” option of the “File” menu of the figure windows. It is used to open the file
selection dialog box in the directory you last used. An empty string means that the current
directory is to be used.

DebugMode

Value: ’on’ or ’off’

Default : ’off’

When this option is turned on, error messages are more verbose, and errors in the DIPimage
toolbox are easier to track. It is used for developing GUI functions.

DefaultActionState

Value: string

Default : ’diptest’

This is the action mode that will be enabled by dipshow when displaying an image to a new
window, or to a window with a mode not compatible with the image being displayed. Possible
values are ’none’, ’diptest’, ’diporien’, ’dipzoom’ and ’dipstep’. See Section 6.2.

DefaultColorMap

Value: string

Default : ’grey’

This is the colormap that will be used by dipshow when displaying an image to a new window.
Possible values are ’grey’, ’periodic’, ’saturation’, ’zerobased’ and ’labels’. See
Sections 7.3 and 6.1.

DefaultComplexMapping

Value: string

Default : ’abs’

This is the complex mapping mode that will be enabled by dipshow when displaying an image
to a new window, or to a window with a mode not compatible with the image being displayed.
Possible values are ’abs’, ’phase’, ’real’ and ’imag’. See Sections 7.3 and 6.1.

DefaultFigureHeight

Value: integer

Default : 256

This value determines the height of a window created by dipshow or dipfig, unless a size is
explicitly given.

DefaultFigureWidth

Value: integer

Default : 256

DIPimage User Manual 49

This value determines the width of a window created by dipshow or dipfig, unless a size is
explicitly given.

DefaultGlobalStretch

Value: ’on’ or ’off’

Default : ’off’

Set this option if you want global stretching for 3D/4D images on by default. See Sections 7.3
and 6.1.

DefaultMappingMode

Value: string

Default : ’normal’

This is the mapping mode that will be enabled by dipshow when displaying an image to a
new window, or to a window with a mode not compatible with the image being displayed.
Possible values are ’lin’, ’percentile’, ’log’, ’base’, ’angle’ and ’orientation’. See
Sections 7.3 and 6.1.

DefaultSlicing

Value: string

Default : ’xy’

Sets the direction in which 3D/4D volumes are sliced by default. Possible values are ’xy’,
’xz’ and ’yz’. See Sections 7.3 and 6.1.

DerivativeFlavour

Value: string

Default : ’spatial’

Sets the way Gaussian derivatives are computed: either by spatial convolution with a Gaussian
derivative or via the Fourier domain. The second is slower and uses more memory, but will
be more accurate for small sigmas. Possible values are ’spatial’ and ’fourier’.

DisplayToFigure

Value: ’on’ or ’off’

Default : ’on’

When this setting is ’on’, the display method of the dip image object sends the image
data to a figure window. When it is ’off’, disp is called instead. The display method is
called when a Matlab command does not end with a semicolon. See Section 4.2 for more
information on this behavior.

EnableKeyboard

Value: ’on’ or ’off’

Default : ’on’

50 Chapter 8. Customizing the DIPimage Environment

If you set this value to ’off’, the keyboard will be disabled when displaying an image. This
is useful for Windows machines, on which the figure window will get keyboard focus when
displaying an image. This can be annoying when you want to continue typing. Enable the
keyboard callback for a figure window using the appropriate menu item under “Actions”.

FileWriteWarning

Value: ’on’ or ’off’

Default : ’off’

If you set this to ’on’ everything you write a non-standard TIFF image in terms of byte
depth or compression a warning will be displayed on the screen. This is useful as many image
viewer cannot read anything but uint8 uncompressed images (e.g. the standard Windows
image TIFF viewer).

Gamma

Value: 3x1 array of floats

Default : [1 1 1]

These parameters control the display of all colour images shown by dipshow. If the values are
different from unity a gamma correction is applied before displaying any image. The different
values control the behaviour for the Red, Green and Blue channel respectively.

GammaGrey

Value: float

Default : 1

Similar to ’Gamma’, but only for grey-value images. This parameter controls the display of all
grey-value images shown by dipshow. If the value is different from unity a gamma correction
is applied before displaying any image.

ImageFilePath

Value: string

Default : ’’

This setting stores the path used to find image files. The functions readim, readcolorim and
readroiim look for a file first in the current directory, and then in each of the directories given
by this option, unless the filename already contains a path. On UNIX and Linux systems,
directories are separated by a colon (:), on Windows systems by a semicolon (;).

ImageSizeLimit

Value: integer

Default : 4096

This is the maximum size of an image automatically displayed through display. If any of the
sizes of an image is larger, you will need to display it manually using dipshow. The reason
behind this behavior is that such an image is most likely to be created accidentally, and not

DIPimage User Manual 51

meant for display anyway. For example, a(a>10) returns a 1D image with all pixel values of
a larger than 10; this is very useful, but not interesting to look at. For a large a (such as a
3D image), the display of the resulting 1D image might require a lot of memory.

MorphologicalFlavour

Value: integer

Default : 0

This setting stores the state usually set though dip morph flavour. The value 0 causes the
morphological operations to follow the definition of Serra and Soille, 2 is for the definition
followed by Heijmans and Haralick. Any other value is equivalent to 0.

PutInCommandWindow

Value: ’on’ or ’off’

Default : ’on’

This option causes commands that are executed from the DIPimage GUI to be printed to the
command window. This makes it possible to copy and paste commands being executed to a
Matlab script.

RespectVisibility

Value: ’on’ or ’off’

Default : ’off’

By default, dipshow hides a window while it prepares for displaying a new image, then
makes it visible again. This speeds up the process, and removes flickering. Setting
’RespectVisibility’ to ’on’ the window remains visible if it was visible (some flickering
might occur), and hidden if it was hidden.

TrueSize

Value: ’on’ or ’off’

Default : ’on’

This setting controls whether diptruesize is called after an image is displayed to a figure
window (see Section 7.4).

Truncation

Value: integer

Default : 3

Setting this value causes dip settruncation to be called. This changes all finite impulse
response Gaussian filters (this number represents the extent of the filtering kernel, in terms of
the given parameter sigma). Note that the Gaussian filters are also available as IIR (infinite
impulse response) filters and as Fourier Domain filters; these versions are not affected by the
truncation parameter.

52 Chapter 8. Customizing the DIPimage Environment

UserManualLocation

Value: string

Default : The URL needed to fetch the user manual online.

This setting stores the location of the DIPimage User Manual (a PDF file). By default it
points to an address online, but you can change it to point to a local copy of the PDF file. A
link on the Help menu of the DIPimage GUI and on the Matlab Start Button are affected
by this setting.

Chapter 9

Low-level DIPlib Interface

The DIPimage toolbox is build around DIPlib, which is a library of image-processing functions
written in C. Most of these functions can be directly called from within Matlab through a
low-level interface. This interface is not as easy to use as the toolbox functions, but it is more
complete.

9.1 The Setup

For each function available in the low-level interface, there is a MEX-file (which is just a
shared object Matlab links to), and an M-file, which just contains some help on calling the
function. However, this help is very meager, since it only lists the name and type of each
parameter. Only when the function does more than just call the equivalent DIPlib function,
are there any comments on how the function works. You will need to check the online DIPlib
documentation to see what each of the parameters does. The online function reference can
be found at:
http://www.qi.tnw.tudelft.nl/DIPlib/docs/reference/.

9.2 Calling DIPlib Functions

You will notice that the parameters required by the interface are exactly those required by
the C functions, but with some exceptions:

• The output parameters are naturally placed at the left-hand side of the function call.
In the corresponding C functions, they are always on the right-hand side. The interface
generates an error when the C function returns an error code.

• The parameters corresponding to the random number generator are stored internally
by the interface and thus are not needed at the command line.

• The parameters corresponding to the extension of the image beyond the boundaries
and the truncation of the Gaussian kernel are also not present in the interface.
The default values for these parameters are used. These defaults can be set and
read with the functions dip setboundary, dip getboundary, dip settruncation and
dip gettruncation.

• None of the DIPlib library variables is passed back to Matlab. This means that any
parameter of the type dip Resources and the like are not present in the Matlab
interface.

• Enumerated values in the C functions have been implemented as strings in the Matlab
interface. The function’s help will list these strings, which are easy to map to the names

53

http://www.qi.tnw.tudelft.nl/DIPlib/docs/reference/

54 Chapter 9. Low-level DIPlib Interface

of the enumerated values (use help parameters if in doubt). If a function requires an
array of these values, the strings should be put in a cell array.

By the way, all DIPlib interface functions have all characters in lower-case, and start with
the characters “dip ”, or “dipio ” for the functions in the dipIO extension library.

Whenever an image is required as input, it is legal to pass either a numeric Matlab array or a
dip image object. Parameters of the type dip FloatArray and the like are usually expected
to be of the same length as the dimensionality of the input image. The low-level interface is
so low-level that it does not even check these simple things, and DIPlib will generate an error
if the array is not of the correct size. Many parameters are allowed to be null pointers in the
C library. Sometimes it is possible to pass an empty array as such a value (for example, pass
an empty array as a mask image if no masking is required).

9.3 Example Function Call

As an example, let us call the DIPlib functiondip Gauss from within Matlab. The declara-
tion of the C function is:
dip_Error dip_Gauss (

dip_Image in,
dip_Image out,
dip_BoundaryArray boundary,
dip_BooleanArray process,
dip_FloatArray sigmas,
dip_IntegerArray parOrder,
dip_float truncation

);

As explained earlier, the parameters boundary and truncation should not be used from
within Matlab. The globally defined default values will be used. The parameter out should
be on the left of the function call. What remains is this:

out = dip_gauss(in,process,sigmas,parOrder);

which we can verify by typing

help dip_gauss

This also gives us the expected data types for each parameter. The data types correspond

DIPimage User Manual 55

with those expected by the C function:
dip_gauss Gaussian Filter.

out = dip_gauss(in, process, sigmas, parOrder)

in
Image.

process
Boolean array.

sigmas
Real array.

parOrder
Integer array.

Parameter in can be a dip image or any numeric array. The length of the other arrays should
match the dimensionality of the image. We will use a two-dimensional image a, which we
want to smooth by convolution with a Gaussian with sigma 5 in the y-direction and 2 in the
x-direction. We would write

b = dip_gauss(a,[1,1],[2,5],[0,0]);

As can be read in the online help for DIPlib, parOrder indicates the order of the derivative.
The process array, which is present in many DIPlib functions, can be used to apply the filter
only in some dimensions.

The dipimage/demos/ directory contains some example M-files. Examine demogdt.m for an
example on using the low-level interface.

Chapter 10

DIPimage and the Matlab Compiler

10.1 The Matlab Compiler

Since Matlab version 7.0 (Release 14), the Matlab Compiler no longer generates C or
C++ code from M-files. Instead, it packages all M-files and MEX-files into a “Component
Technology File” (CTF) archive, generates a small stub executable, and requires the end user
to install the Matlab Component Runtime (MCR). This MCR is the Matlab interpreter
(but without licensing restrictions). The upside of this is that there are no longer limitations as
to what M-files can be compiled, meaning it is now possible to create standalone applications
that use DIPimage. The downside is that, since code is not really compiled, there is no
performance benefit to compiling.

The Matlab compiler can generate shared objects (dynamically linked libraries) as well as
executables. This means that it is still possible to compile M-file code so that it can be
called from your own C or C++ code, even though this compiled M-file code can no longer
be statically linked into your executable.

M-files in the CTF archive are encrypted so that it is not possible to obtain source code from
the compiled application. MEX-files are also protected in some way so they cannot be run
outside of the deployed application. Therefore, even though the code is not truly compiled,
your code is reasonably well protected against reverse-engineering.

The explanations below are for Linux/UNIX systems. If you use Windows, similar issues
will have to be taken into account. The Matlab Compiler User’s Guide (available online at
http://www.mathworks.com/access/helpdesk/help/pdf doc/compiler/compiler.pdf) contains
all the information needed to compile an M-file that uses DIPimage.

10.2 Compiling an M-file that uses DIPimage

Please first read the Matlab Compiler User’s Guide, and make sure you are able to generate
the magicsquare.m stand-alone example application using the mcc command (not through
the deploytool GUI, since the explanations below assume you are familiar with mcc).

There are a few things that have to be taken into account when your M-file uses DIPimage.
First, like with other toolboxes, the DIPimage directory must not be added to the Mat-
lab path through the startup.m file (as suggested in the DIPimage installation instruc-
tions), but through the mcc command line. Second, instead of calling dip initialise, call
dip initialise libs.

dip initialise searches for the correct version of the DIPimage toolbox to use, depend-

56

http://www.mathworks.com/access/helpdesk/help/pdf_doc/compiler/compiler.pdf

DIPimage User Manual 57

ing on the Matlab version you are running. It then adds the necessary paths and calls
dip initialise libs. Since this process doesn’t work with the Matlab Compiler, you will
need to do these two steps separately.

Hence, you need to create a special version of your startup.m file in the directory
where your application M-file lives. Remove all the addpath instructions, and change
the line dip initialise into dip initialise libs (if you do not want the DIPlib ver-
sion information to be displayed on startup, you can use the ’silent’ argument to
dip initialise libs). Alternatively, you can call the dip initialise libs function in
your application M-file. In this case, make and empty startup.m file to avoid your default
one to be used.

To find out which directories you need to add to the Compiler search path, type path on the
Matlab command line. It should return a long list of directories, three of which look like
this:

/something/dip/common/mlv7_4/diplib
/something/dip/common/mlv7_4/dipimage_mex
/something/dip/common/dipimage

These three paths can be added the the mcc command line using the ‘-I’ argument:
mcc -m myapplication.m ...

-I /something/dip/common/dipimage ...
-I /something/dip/common/mlv7_4/dipimage_mex ...
-I /something/dip/common/mlv7_4/diplib

Under some circumstances, mcc might give a warning telling you that the
dip initialise libs command is unknown. However, when running the resulting
executable, DIPlib gets initialized just fine. This must be due to the order in which paths
get added and commands are executed.

When running the stand-alone application you just created, the three DIPlib shared libraries
must be on the LD LIBRARY PATH environment variable, as discussed in Section 2.2. It is
possible to edit the shell script that is created by mcc (run myapplication.sh) to properly
set the LD LIBRARY PATH environment variable.

10.3 Deploying your compiled program

First of all, note that you need a special license of DIPimage and DIPlib to be able to
distribute a program that uses this toolbox and associated libraries. Please read our web
page (http://www.diplib.org/) for information on how to obtain such a license.

The CTF file created by mcc needs either the exact same version of Matlab, or the MCR cre-
ated with that version, to run. It will also need the three DIPlib shared libraries libdip.so,
libdipio.so and libdml mlvX X.so (the name of this last SO file should match the direc-
tory name given as path to the Matlab Compiler). The end-user needs to install these
three libraries and adjust the LD LIBRARY PATH environment variable prior to starting the
executable.

http://www.diplib.org/

58 Chapter 10. DIPimage and the Matlab Compiler

There is a very simple way of including the DIPlib libraries in the CTF file:
mcc -m myapplication.m ...

-I /something/dip/common/dipimage ...
-I /something/dip/common/mlv7_4/dipimage_mex ...
-I /something/dip/common/mlv7_4/diplib ...
-a /something/dip/Linux/libdip.so ...
-a /something/dip/Linux/libdipio.so ...
-a /something/dip/Linux/libdml_mlv7_4.so

The CTF archive will be called myapplication.ctf, and, once extracted, the DIPlib libraries
will be in the directory myapplication mcr/something/dip/Linux/ (assuming 32-bit Linux
OS).

Thus, assuming your user puts the files myapplication.ctf and myapplication into the
directory /home/user/myapp/, and installed the MCR into /usr/local/mcr/v76/, your user
will have to do the following to start the application:

MCRROOT=/usr/local/mcr/v76
LD_LIBRARY_PATH=/home/user/myapp/myapplication_mcr/something/dip/Linux/
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRROOT}/runtime/glnx86
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRROOT}/bin/glnx86
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRROOT}/sys/os/glnx86
MCRJREVER=‘cat ${MCRROOT}/sys/java/jre/glnx86/jre.cfg‘
MCRJRE=${MCRROOT}/sys/java/jre/glnx86/jre${MCRJREVER}/lib/i386
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}/native_threads
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}/server
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}/client
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MCRJRE}
XAPPLRESDIR=${MCRROOT}/X11/app-defaults
export LD_LIBRARY_PATH
export XAPPLRESDIR
/home/user/myapp/myapplication <arguments>

You would do good creating a little shell script that collects these commands, and provide it
with your executable (instead of run myapplication.sh).

Note that, in the shell commands above, the ones that contain MCRJRE are needed only if Java
is enabled. You can add -R "-nojvm" to the mcc command to disable Java if your application
does not use it. In the same way, add -R "-nodisplay" if your application does not use the
graphic display.

	 Introduction
	The DIPimage toolbox
	The DIPlib library
	Image Processing
	Documentation Conventions
	Acknowledgments

	 Installing DIPimage
	Windows Installation
	Automatic Installation
	Manual Installation

	UNIX Installation
	MacOS X Installation

	 Getting Started
	Starting the GUI
	Loading and Displaying an Image
	Pre-processing the Image
	Measuring
	Where to Go from Here

	 The dip_image Object
	Creating a dip_image Object
	Displaying dip_image Objects
	Operations on dip_image Objects
	Dimensions
	Indexing Pixels
	Image Arrays
	Tensor Images
	Color Images
	A Note on the end Method in Indexing
	Special Functions
	Review of the Differences Between a dip_image and a Matlab Array

	 The dip_measurement Object
	Extracting Measurement Data
	Other Information on the dip_measurement Object
	Combining Measurement Data
	Adding Measurement Data
	Converting a dip_measurement Object to a dataset Object
	Creating a dip_measurement Object with Your Own Data
	Backwards Compatibility

	 Figure Windows
	The Figure Window Menus
	Using the Mouse in Figure Windows
	Using the Keyboard in Figure Windows
	Linking Variables with Figure Windows
	Setting the Position of Figure Windows

	 Toolbox Functions
	The GUI: dipimage
	The dipshow Function
	Figure Window Support: dipmapping
	Figure Window Support: diptruesize
	Figure Window Support: diptest, dipzoom, et al.
	Figure Window Support: diplink
	Creating, Linking and Clearing Figure Windows: dipfig and dipclf
	Toolbox Preferences: dipsetpref and dipgetpref
	Interactive Tools: dipcrop, dipgetcoords, et al.
	Other 3D Visualization Tools: dipanimate, dipisosurface, dipprojection
	Image Processing Functions
	Adding Functions to the GUI
	Automatic Parameter Parsing

	 Customizing the DIPimage Environment
	Figure Windows
	Graphical user Interface
	Initialization File
	Other Settings

	 Low-level DIPlib Interface
	The Setup
	Calling DIPlib Functions
	Example Function Call

	 DIPimage and the Matlab Compiler
	The Matlab Compiler
	Compiling an M-file that uses DIPimage
	Deploying your compiled program

