
MEX-File Programming
for Image Processing Using DIPimage

dr. ir. Cris L. Luengo Hendriks

Quantitative Imaging Group,
Department of Applied Sciences, Delft
Delft University of Technology May 11, 2007

Contents

1 Introduction 1
1.1 MATLAB Scripting Language Versus C . 1
1.2 Possibilities Within a MEX-File . 1
1.3 The MATLAB Compiler . 1
1.4 Structure of This Document . 1
1.5 Documentation Conventions . 2

2 Vectorizing Algorithms 3
2.1 General Guideline . 3
2.2 Using repmat and reshape . 4
2.3 Generating Coordinate Images . 4
2.4 Using find and Mask Images . 5

3 A Basic MEX-File 7
3.1 The Gateway Routine: mexFunction . 7
3.2 The mxArray . 7

4 Using dip image Objects in a MEX-File 10
4.1 Calling Back to MATLAB . 10
4.2 Retrieving Pixel Data in a Specific Format . 10
4.3 Returning dip image Objects from a MEX-file 10

5 Other Topics 12
5.1 MATLAB Memory Management . 12
5.2 Compiling MEX-files that Call Libraries . 13
5.3 Debugging Your MEX-file . 13

6 Using DIPlib in Your MEX-file 15
6.1 An Interface Between MATLAB and DIPlib 15
6.2 Writing a DIPlib Function Within a MEX-file 17
6.3 Combining DIPlib Calls and MATLAB Functionality in the Same Function . 17
6.4 Linking Your MEX-file to DIPlib . 18

III

IV

Chapter 1

Introduction

1.1 MATLAB Scripting Language Versus C

MATLAB scripts are very slow when it comes to loops. In image processing, it sometimes is
necessary to visit each pixel in turn to compute something. This will often require a loop or
a set of loops. Sometimes, however, the loops can be avoided by vectorizing the code. This
means that a function is applied to all pixels at once; MATLAB does the looping implicitly.
In the cases where a computation is not vectorizable, and speed is important, it is possible
to re-write the MATLAB script in C. A MATLAB function written in a compiled language
is called a MEX-file (for MATLAB executable file).

1.2 Possibilities Within a MEX-File

By making the step to C, complex mathematical expressions cannot be written in a simple
manner any more. However, since it is possible to call back to MATLAB, you can ask it to
evaluate any MATLAB command. This enables the programmer to write efficient code in C
without loosing the flexibility of the interpreted language. It also means that everything you
can do from an M-file, you can also do from a MEX-file.

1.3 The MATLAB Compiler

The MATLAB Compiler can generate C code from M-files, which can, in turn, be compiled
into MEX-files. This looks interesting, but it lacks a feature (at the time of this writing),
which makes it useless in combination with DIPimage: it is not possible to compile M-files
that use objects and object methods. I hope this changes soon. The MathWorks, creators of
MATLAB, have been promising for two years that a future version of their compiler will be
able to handle objects.

If you want to use the MATLAB Compiler to generate C code for you, don’t use the dip image
object or any of the DIPimage functions. Also do not call any MEX-file (such as the DIPlib
functions).

1.4 Structure of This Document

The next chapter deals in avoiding loops in MATLAB scripts. It gives a set of tips and hints
towards vectorizing your algorithms. Chapter 3 shows how to write and compile MEX-files,
and Chapter 4 deals with the dip image object. Chapter 5 explains some advanced topics

1

2 Chapter 1. Introduction

concerning memory management, compiling complex projects and debugging them. Finally,
Chapter 6 explains how to call your own DIPlib code from MATLAB, and how to use calls to
DIPlib functions in your MEX-files. This chapter is only intended for people that have read
the DIPlib Programmers Guide.

1.5 Documentation Conventions

The following conventions are used throughout this manual:

• Example code: in typewriter font

• File names and URLs: in typewriter font

• Function names/syntax: in typewriter font

• Keys: in bold

• Mathematical expressions: in italic

• Menu names, menu items, and controls: “inside quotes”

• Description of incomplete features: in italic

Chapter 2

Vectorizing Algorithms

2.1 General Guideline

It is worth the effort to try to vectorize an algorithm only if it takes too long to run. The
term “too long” is subjective, but should be related to the time that you need to rewrite the
algorithm.

A piece of code that is called many times is more interesting to optimize than one that is called
only once. A piece of code that takes up a large portion of the total time of the algorithm is
more interesting to optimize than the rest.

The functions tic and toc can be used to measure the time spend by a function or group of
commands. toc returns the amount of time (in seconds) elapsed since the last call to tic.
The function profile provides a more comprehensive way of profiling your functions.

The general idea of vectorization is that writing

a = a*2;

is much better than writing
for ii=1:prod(size(a))

a(ii) = a(ii)*2;
end

In this case it is obvious how to write the vectorized form of the expression, but in other cases
it is less so. Take as an example a neighborhood operation. A uniform filter can be written
in this way (note that the indexing used assumes in and out are dip image objects):

for ii=1:size(a,1)-2
for jj=1:size(a,2)-2

out(ii,jj) = (in(ii-1,jj-1)+in(ii,jj-1)+in(ii+1,jj-1)+...
in(ii-1,jj)+in(ii,jj)+in(ii+1,jj)+...
in(ii-1,jj+1)+in(ii,jj+1)+in(ii+1,jj+1))/9;

end
end

This is very slow. Another way to do it is this:
out = (in(0:end-2,0:end-2)+in(1:end-1,0:end-2)+in(2:end,0:end-2)+...

in(0:end-2,1:end-1)+in(1:end-1,1:end-1)+in(2:end,1:end-1)+...
in(0:end-2,2:end)+in(1:end-1,2:end)+in(2:end,2:end))/9;

The second method is much quicker, but also requires more memory. In the example above,
9 temporary images were made, against none in the first method.

3

4 Chapter 2. Vectorizing Algorithms

Functions such as find, repmat and reshape are often used to avoid writing loops. Much
like the example above, the drawback of using them is the need for more memory.

2.2 Using repmat and reshape

Imagine you have a MATLAB array in which each row represents a histogram of some sort.
You want to normalize those histograms by dividing each row in the array by its sum. The
direct (non-vectorized) way of doing this is:

for ii=1:size(h,1)
h(ii,:) = h(ii,:)/sum(h(ii,:));

end

This can be vectorized by using repmat. repmat will replicate or tile an array a num-
ber of times in any direction. For example, repmat(x,1,2) is the same as [x,x],
and repmat(x,100,300) is the same as [x,x,x,...;x,x,x,...;...], an array of size
size(x).*[100,300]. Thus, the above example can be written as

h = h./repmat(sum(h,2),1,size(h,2));

sum(h,2) is the sum over the rows of h, and the result is replicated to the same size as h.
This matrix can be used to divide h by.

Another example for the use of repmat is subtracting from each slice in a 3D image the same
2D image:
a = readim
b = scalespace(a)
b - repmat(a,1,1,size(b,3))

reshape is used to change the shape of a matrix (or image). This can be useful in many
cases, as in the next example. Imagine you want to flip every block of 8 rows in an image.
The simplest way to do this is to reshape the image to 8 rows, flip them, and then reshape
the image to its original size:

b = reshape(a,prod(size(a))/8,8);
b = flipud(b);
b = reshape(b,size(a))

Note that reshape takes rows from the image (that is, the second dimension (y) is taken
first). This is consistent with indexing using a single index, where that index also increases
first along the y-dimension.

2.3 Generating Coordinate Images

Especially when creating test images, it is required to do some computations that involve the
coordinates of a pixel. These operations can be vectorized by creating images that contain
these coordinates. Like with the use of repmat, this speeds up calculations at the expense of
larger memory requirements. The following functions fall in this category:

MEX-File Programming with DIPimage 5

xx distance along the x-axis from the center of the image.
yy distance along the y-axis from the center of the image.
zz distance along the z-axis from the center of the image.
rr distance from the center of the image.
phiphi angle around the center of the image from the horizontal (0 being to the right).

All of these have the same syntax. They allow both a size vector for the output image, or
an image whose size is to be taken. The center of the image is defined consistently with the
Fourier transform in DIPlib, to the right of the true center if the size is even:

[-4,-3,-2,-1,0,1,2,3]

For example, to create concentric circles, use cos(rr).

The functions meshgrid and ndgrid can be used to accomplish similar things with MATLAB
arrays, instead of dip image objects.

2.4 Using find and Mask Images

To apply operations selectively to certain pixels only, a mask image can be created and used
to index the image. For example, setting all negative pixels to 0 is easy this way:

a(a<0) = 0;

Another example is to multiply the values of all non-zero pixels:

prod(double(a(a~=0)));

(since prod is not defined for the dip image object, we convert the pixel data to doubles
first). Note that by indexing using a mask image, we create a 1D image with the selected
pixel values.

m = a~=0;
a(m)

is the same as
I = find(a~=0);
a(I)

The array I above contains indices into the image a, and can be used to index it in the
same way as a mask image. Note that the indices in I go down and then to the right
(y+x*size(a,2)). I can be used when looping is unavoidable, and you want to address each
of the pixels in the mask. Thus, instead of:
m = a~=0; Q = 1;
for ii=0:prod(size(m))-1

if m(ii)
a(ii) = Q;
Q = Q+1;

end
end

6 Chapter 2. Vectorizing Algorithms

you can write
I = find(a~=0);
for ii=1:length(I)

a(I(ii)) = ii;
end

(Note that the above actually is vectorizable, but I couldn’t think of a simple application that
is not.)

Chapter 3

A Basic MEX-File

This chapter shows the basic form and elements of a MEX-file written in C. You can also
write MEX-files in C++ and FORTRAN, which is very similar.

3.1 The Gateway Routine: mexFunction

Each MEX-file must have a function called mexFunction, with a pre-defined set of parameters.
This is the function that MATLAB calls when you type the name of the MEX-file at the
command prompt. This is the smallest MEX-file:

#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{
}

which might or might not compile depending on your compiler. It obviously does nothing.
To compile it, type

mex mymexfile.c

at the MATLAB command prompt. This will create a MEX-file called mymexfile, which you
can then execute in the same way you would execute an M-file. Read “Application Program
Interface Guide” (in the MATLAB manual set) for instructions on customizing the mex script.

The four parameters to mexFunction are nlhs, the number of left-hand side parameters,
plhs[], the array of left-hand side parameters, nrhs, the number of right-hand side parame-
ters, and prhs[], the array of right-hand side parameters. plhs[] and prhs[] are arrays of
pointers to mxArray structures, described in the next section. It is very important to note the
const qualifier on the right-hand side parameter array. You are not supposed to change the
input arrays. Create a new array to write values to. You can pass an input array as output,
but you should not change it.

3.2 The mxArray

The mxArray is the structure that encapsulates a MATLAB array. All of the array types
can be represented in such a structure. The “Application Program Interface Reference” lists
many functions to deal with the mxArray, including functions to create and destroy all types
of arrays, and to fill elements of the structure and cell arrays. These all start with mx, and
are too many to mention here. Just read the online reference.

A second set of functions available to the MEX-file programmer are those that start with mex.

7

8 Chapter 3. A Basic MEX-File

They can be used for the interaction with MATLAB, and contain things like mexErrMsgTxt,
mexCallMATLAB, and mexPrintf. Again, see the reference manual.

The best way to show the usage of the mxArray is through an example. This function is called
rmsd, and calculates the root mean square value of the input data. The call rmsd(a) is the
same as sqrt(sum(a(:).^2)).
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
double res = 0;
double *in;
int ii, nel;
/* Check for proper number of input and output arguments */
if (nrhs != 1) {

mexErrMsgTxt("One input argument required.");
}
if (nlhs > 1) {

mexErrMsgTxt("Too many output arguments.");
}
/* Check data type of first input argument */
if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) {

mexErrMsgTxt("Input argument must be a real double.");
}
/* Do the calculations */
nel = mxGetNumberOfElements(prhs[0]);
in = mxGetPr(prhs[0]);
for (ii=0; ii<nel; ii++) {

res += *in * *in;
in++;

}
res = sqrt(res);
/* Create an output matrix and put the result in it. */
plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
mxGetPr(plhs[0])[0] = res;

}

The function first checks the number of input and output arguments. Note that nlhs can be
zero, but plhs[0] is always defined. This is because, if no output arguments are given by the
user, the output argument is put into ans.

The second part of the function checks the type of the input matrix. It must be double or
else we cannot handle it (we could, if we wanted, though!)

Next we retrieve the number of elements in the array, and the pointer to the first element.
We loop over all elements, adding their square up as we go. Finally, we take the square root.

The last part of the function allocates an mxArray structure, assigns it to the output and
puts the result in it.

MEX-File Programming with DIPimage 9

By examining the list of mx... functions, you should be able to get an idea of the possibilities
open to you. However, for image processing, not much more than the above statements are
necessary.

Chapter 4

Using dip image Objects in a MEX-File

4.1 Calling Back to MATLAB

The dip image object is seen as a structure array inside the MEX-file, but the class name is
recognizable. Thus, the call

if (mxIsClass(prhs[0], "dip_image")) ...

can distinguish if the input is an object of type dip image. It is then possible to extract each
of the elements of the structure. But you shouldn’t do this, since it would make your code
less robust against changes in the internal definition of the dip image class. Correct would
be to call double in MATLAB to get an array with doubles. This is then easy to process
using mxGetPr:
mxArray *mxdata;
double *data
mexCallMATLAB(1, &mxdata, 1, &prhs[0], "double");
data = mxGetPr(mxdata);

If mxdata contains complex data, you also would want to call mxGetPi.

4.2 Retrieving Pixel Data in a Specific Format

If you don’t want to convert the pixel data into doubles, but single float values, call the
function single instead of double. Other available functions are: uint8, uint16, uint32,
int8, int16 and int32. Finally, the function dip array will return an array of the type that
was originally there, without any conversions. Next call mxGetClassID to extract the data
type, mxIsLogical will return true if the image was binary, and mxGetData returns a void
pointer to the data (you will have to cast it to the appropriate data type). Note that it is
difficult to write a function that can handle any data type; it is better to convert to singles
or doubles. Finally, mxIsComplex returns true if there is an imaginary part, which can be
obtained with mxGetImagData.

4.3 Returning dip image Objects from a MEX-file

Using the same syntax as before, we can convert any numerical array into an object of type
dip image by calling MATLAB:

mexCallMATLAB(1, &plhs[0], 1, &mxdata, "dip_image");

10

MEX-File Programming with DIPimage 11

To create a dip image of another type is a bit more tricky:
mxArray *args[2];
args[0] = mxdata;
args[1] = mxCreateString("sfloat");
mexCallMATLAB(1, &plhs[0], 2, args, "dip_image");

Furthermore, things like concatenating images into an image array, creating color images,
doing arithmetic with images or applying any previously defined function to an image should
be done through callbacks to MATLAB. This is the more efficient way of doing them (in
terms of your time).

It is best if you only re-write in C that portion of you algorithm that is too slow. Make
a private MEX-file that you call at the substituted portion of your algorithm. This way,
only you have to call it, and you don’t need waste too much time on correctly parsing all the
(possibly wrong) input values. Besides, MATLAB gracefully kills any MEX-file that produces
segmentation errors, so you really don’t need to worry about inputs.

Chapter 5

Other Topics

5.1 MATLAB Memory Management

MATLAB should handle all memory for you. All you need to do is create arrays; they will
be destroyed automatically when your function returns or when you call mxErrMsgTxt, which
quits your function. However, it is possible to delete temporary arrays halfway a calculation
to free up memory for other arrays. It is also possible to create static arrays, which stay in
memory from one call to the next.

5.1.1 Removing Arrays from Memory

A call to mxDestroyArray removes both the mxArray structure and the associated data. You
should never destroy an array passed to you by MATLAB in the prhs[] array, and neither
should you destroy an array you want to pass back to MATLAB through the plhs[] array.
Arrays that you don’t destroy explicitly will be destroyed by MATLAB upon finishing the
execution of your mexFunction.

5.1.2 Allocating Memory for Other Purposes

mxMalloc, mxCalloc, mxRealloc and mxFree should be used inside MEX-files instead of
their C counterparts (malloc, calloc, realloc and free). Memory allocated through these
functions will be freed automatically when your function ends.

Memory allocated using these functions can be inserted into an mxArray as the real or imag-
inary part of the data (see mxSetPr or mxSetData and mxSetN or mxSetDimensions).

5.1.3 Making Arrays Persistent (Static)

In the event that you want some data to be available from one function call to the next, you
can create a persistent mxArray, which won’t be freed until you do so explicitly. You are
responsible for doing so, if you don’t, MATLAB will leak memory. By registering a function
with mexAtExit, you can make sure that the mxArray will be freed when your MEX-file
is cleared (which happens when the user types clear mex or clear all at the MATLAB
command prompt). If you don’t want your function to be cleared, you can lock it with
mexLock. The next example illustrates this. It is a function that generates a random value
(calling MATLAB to do so!), and stores it in a persistent array. Every time the function
is called, the same value is returned. However, after clearing the MEX-file, the value is
destroyed, and a new one must be generated. Enabling the call to mexLock causes the array
never to be cleared (until MATLAB is closed, that is).

12

MEX-File Programming with DIPimage 13

Take care with locked MEX-files: since MATLAB cannot clear them, it is not possible to
recompile them in the same MATLAB session (you have to quit MATLAB to free the MEX-
file). Call mexUnlock to unlock the file (it’s a good idea to have a special syntax for your
function that causes it to unlock itself, so that you can recompile it during development).
#include "mex.h"

mxArray* value=NULL;

void AtExit(void)
{

if (value) {
mexPrintf("Clearing data!\n");
mxDestroyArray(value);

}
}

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
if (!value) {

mexCallMATLAB(1,&value,0,NULL,"rand");
mexMakeArrayPersistent(value);
mexAtExit(AtExit);
/* optionally: mexLock(); */

}
plhs[0] = value;

}

Note how MATLAB correctly handles indirect copies to the array value (it is both put into
the output variable and stored in the MEX-file itself).

It is also possible to make memory allocated with mxMalloc, mxCalloc, etc. to be persistent.

5.2 Compiling MEX-files that Call Libraries

If your MEX-file depends on other C sources or libraries, add their names on the call to mex.
Libraries can be added under UNIX with the familiar -l<file> syntax. The first C source
dictates the name of the resulting MEX-file. Use the -output <name> option to specify a
function name.

5.3 Debugging Your MEX-file

Compile your MEX-file with the -g option (debugging symbols enabled).

On UNIX machines, load MATLAB with the -D switch:

matlab -Ddbx

(or whatever name of debugger you use). This causes MATLAB to be loaded within the

14 Chapter 5. Other Topics

debugger. Now issue a “run” command to let MATLAB start. In MATLAB, now type

dbmex on

When you call a function in a MEX-file, the debugger will appear. You can also set breakpoints
and what not.

On Windows machines, start your debugger, and run MATLAB from it (MATLAB has no
debugging symbols, you will get a warning for this). Now set breakpoints (either in the code,
or “on image load” or something). You also need to set the debugger to stop on handled
exceptions, since MATLAB handles all exceptions your MEX-file generates (segmentation
violations and the like). If you now run your function from MATLAB, the debugger should
come into action.

The book “Application Program Interface Guide” from the MATLAB manual set gives more
detailed information on this topic.

Chapter 6

Using DIPlib in Your MEX-file

This chapter assumes you are somewhat familiar with DIPlib. We recommend that you
first read the “DIPlib Programmers Guide”. This chapter deals with two seprate problems:
adapting your MEX-file to call a function in DIPlib (which involves everything from converting
MATLAB mxArray objects to the appropriate DIPlib structures, to linking DIPlib with your
MEX-file), and writing your own DIPlib-style code within a MEX-file.

6.1 An Interface Between MATLAB and DIPlib

When linking a MEX-file to DIPlib, it is necessary to link to libdml as well. It contains all
the functionality needed to link MATLAB and DIPlib.

This section discusses some of the functions defined in this interface.

6.1.1 DIPlib-Style Resource Management and Error Handling

When creating a mexFunction that uses DIPlib functionality, it is recommended to use a set
of macros that reproduces DIPlib’s own resource management and error handling. This is, of
course, not necessary, but makes things a bit easier. The code would look like this:

#include "dml_dipmex.h"

void mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]) {

int arg1, arg2;
...
DML_ERROR_INIT;

...
DMLXJ (dip_function (arg1, arg2, ...));
...

dml_error:
DML_ERROR_EXIT;

}

You will immediately see the similarity to DIPlib code.

DML ERROR INIT initializes the error management structures and allocates a resources struc-
ture named rg. DMLXJ is similar to DIPXJ, and jumps to the dml error label if the DIPlib

15

16 Chapter 6. Using DIPlib in Your MEX-file

function returns an error state. DML ERROR EXIT will deallocate any memory registered to rg
and print the function call stack to the MATLAB window in case an error occurred. There
is also a DMLSJ defined, to substiture DIPSJ. Do not use any of the DIPxx macros, though,
since they assume different internal variable names and labels.

dml dipmex.h includes diplib.h and mex.h, so you do not need to include these explicitly.

6.1.2 Converting MATLAB mxArray Objects to DIPlib Objects

There are various data types that are interesting to convert to and fro between DIPlib and
MATLAB. Foremost are images. There are four macros that deal with this, assuming you
are using the abovementioned DML ERROR INIT and related macros. DML MEX2DIP(ma,im) will
convert the MATLAB array or dip image object ma into a DIPlib dip Image structure im.
To convert it back to a MATLAB array use DML DIP2MLA(im,ma), and to convert it back to a
dip image object use DML DIP2MEX(im,ma). Finally, to create an (unspecified) DIPlib image
use DML GENDIP IMAGE(im) (which calls dip ImageNew() in such a way that the image, when
forged, will be allocated by MATLAB). All of these macros avoid copying of the image data
by making DIPlib use memory allocated by MATLAB. This is sadly not possible for complex
image data. MATLAB and DIPlib differ too much in the way this data is stored to be able
to share it directly. Therefore, complex images are copied each time one of these macros is
called.

For other common DIPlib tipes, such as arrays and enumeration types, there are also macros.
However, these were written to simplify the task of creating a glue layer between DIPlib and
MATLAB. Therefore, they are not as flexible as the macros mentioned above. The ones
converting MATLAB data to DIPlib require a input parameter number (the n in prhs[n])
and a variable name. See the file dml macros.h for a complete listing. You can also copy
code from this file instead of using the macros, which will prove more flexible.

MEX-File Programming with DIPimage 17

As an example, this is the code for the MEX-file dip gauss:
#include "dml_dipmex.h"
#include "dip_linear.h"
#include "dip_globals.h"

void mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]) {

dip_Image in;
dip_Image out;
dip_BooleanArray process;
dip_FloatArray sigmas;
dip_IntegerArray parOrder;
DML_ERROR_INIT;
DML_CHK_NARGSIN (4);
DML_CHK_NARGSOUT (1);
DML_2DIP_IMAGE (0, in);
DML_GENDIP_IMAGE (out);
DML_2DIP_BOOLEANARRAY (1, process);
DML_2DIP_FLOATARRAY (2, sigmas);
DML_2DIP_INTEGERARRAY (3, parOrder);
DMLXJ (dip_Gauss (in, out, NULL, process, sigmas, parOrder, -1));
DML_2MEX_IMAGE (0, out);

dml_error:
DML_ERROR_EXIT;

}

6.2 Writing a DIPlib Function Within a MEX-file

The C source file for your MEX-file can, of course, contain other functions definitions as well.
You can write a DIPlib function within the same source file without any problem. You can
also write this function in its own C source file, and link the two together when creating the
MEX-file.

The DIPlib function should not use the DML... macros described above, but the DIP...
macros described in the “DIPlib Programmers Guide”. It should also stay away from any
MATLAB functions.

6.3 Combining DIPlib Calls and MATLAB Functionality in the Same
Function

If you have a function that does much more processing than only calling a DIPlib function,
you might not want to use the dml error label at the end. In this case, you will not be able

18 Chapter 6. Using DIPlib in Your MEX-file

to use the DMLXJ macro. Do this instead:
void mexFunction (int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]) {
int arg1, arg2;
DML_ERROR_DECLARE

... /* some non-DIPlib code */

DML_ERROR_START
*errorNext = dip_function ();
*errorNext = dip_function ();
*errorNext = dip_function ();
DML_ERROR_FINISH

... /* some more non-DIPlib code */

DML_ERROR_START
*errorNext = dip_function ();
DML_ERROR_FINISH

... /* even more non-DIPlib code */
}

DML ERROR FINISH causes your function to exit with an error message, and clears all resources
registered in rg.

Also use dml mex2dip(ma,&im,rg), dml dip2mla(im,&ma), dml dip2mex(im,&ma)
and dml newdip(&im,rg) instead of DML MEX2DIP(ma,im), DML DIP2MLA(im,ma),
DML DIP2MEX(im,ma) and DML GENDIP IMAGE(im).

Otherwise it is not a problem combining DIPlib code and MATLAB code in one function.

6.4 Linking Your MEX-file to DIPlib

The mex command, as discussed in Chapter 3, will compile your MEX-file. You will need to
give it some extra parameters so that it will link to DIPlib and the libdml interface library,
and so that it will be able to find the DIPlib include files:
mex mymexfile.c -I/dip/Linux/include -L/dip/Linux/lib ...

-ldml -ldipio -ldip

(make sure you use the right paths). You might also need to add the math library, with -lm.
Under Windows, this is a bit different:

mex mymexfile.c -Ic:\dip\include c:\dip\bin\libdml.lib ...
c:\dip\bin\libdip.lib c:\dip\bin\libdipio.lib

(again, fill in the right paths).

If you have more than one C source file, just put them all on the mex command line:

mex mymexfile.c somefunction.c morestuff.c etc.

MEX-File Programming with DIPimage 19

The MEX-file will get the name of the first C-file. If you want to change this name, use the
-output option:

mex file1.c file2.c file3.c -output mymexfile etc.

	 Introduction
	MATLAB Scripting Language Versus C
	Possibilities Within a MEX-File
	The MATLAB Compiler
	Structure of This Document
	Documentation Conventions

	 Vectorizing Algorithms
	General Guideline
	Using repmat and reshape
	Generating Coordinate Images
	Using find and Mask Images

	 A Basic MEX-File
	The Gateway Routine: mexFunction
	The mxArray

	 Using dip_image Objects in a MEX-File
	Calling Back to MATLAB
	Retrieving Pixel Data in a Specific Format
	Returning dip_image Objects from a MEX-file

	 Other Topics
	MATLAB Memory Management
	Compiling MEX-files that Call Libraries
	Debugging Your MEX-file

	 Using DIPlib in Your MEX-file
	An Interface Between MATLAB and DIPlib
	Writing a DIPlib Function Within a MEX-file
	Combining DIPlib Calls and MATLAB Functionality in the Same Function
	Linking Your MEX-file to DIPlib

